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Abstract-In this paper, trellis group codes are introduced as an 
extension of Slepian group codes to codes over sequence spaces. 
A trellis group code is defined over R” as the orbit of a bi-infinite 
“seed sequence”, 20 E (W”)‘, under an infinite, defining group 
of transformations. This group of transformations is generated 
by a symbolic system. The theory is developed by combining 
a nontrivial extension of the notion of an isometric labeling, 
with results from the theory of symbolic dynamics over groups. 
New results presented here include a useful characterization of 
uniform partitions and a symbolic dynamic classification of trellis 
group codes. The theory is used to develop a class of rotationally 
invariant, nonabelian trellis group codes for QAM modulation. It 
is also shown that the S-state, rotationally invariant trellis code 
designed by Wei, used in the V.32 (and V.32 bis) international 
modem standard, belongs to this class. 

these symmetries are sufficiently rich as to generate C. This 
duality of viewpoints leads one to consider two problems: the 
“synthesis problem,” or how does one generate “good” group 
codes, and the “analysis problem,” or, how does one decide if 
a given code is a group code? 

Forney [2] opened these two problems to the important and 
much broader class of “trellis codes.” For purposes of this 
paper, a trellis code is an infinite-dimensional code, described 
in terms of bi-infinite sequences, based on component block 
codes lying in W”. Forney’s observations suggest many open 
questions, several of which are addressed in this paper. 

Index Terms-Trellis-Coded Modulation (TCM), symbolic dy- 
namics, orbit systems, trellis group codes, rotationally invariant 
codes. 

I. INTRODUCTION 

T HIS PAPER considers the symmetries of error control 
codes generated by finite-state machines and used-over 

additive white Gaussian noise channels. The basis for this work 
can be found in the work of Slepian [l] and the recent work of 
Forney [2]. In the former work, a block code in n-dimensional 
Euclidean space, IF!%, is created by the selection of 

1) a “seed” vector zo E Rn, and 
2) a finite group A of linear transforms on R”. 

The “group code” is then the finite set of vectors defined as the 
orbit of the seed under the action of the group, C = h(zu). 
Note that in Slepian’s formulation, the group code itself is 
not, in general, a group. 

A simple extension of a Slepian group code to the sequence 
domain is obtained from the direct product group and direct 
product code. A group B of linear transforms on R” and a point 
20 E R” define a Slepian group code B(zc). The bi-infinite, 
direct product group is described by all sequences indexed 
by Z, 6”, and is a group under the obvious, component-wise 
group operation. Similarly, the direct product code is the set 
of sequences G(zn)‘. If one takes the group A = 8” and the 
constant seed sequence 20, then h(za) is a trellis group code. 

One interesting feature of the direct product code is that it, 
and its defining group A, are closed under the shift operator 
(i.e., if one takes any sequence from the code and shifts it left 
or right, then the result is a member of the code). In general, 
a nontrivial trellis group code is a shift-invariant subcode of 
the direct product code; it is defined from a shift-invariant 
subgroup A < &7’ of the direct product group operating on 
the constant seed sequence 50. This combination produces the 
trellis group code A(zo). 

It is natural to ask if a given collection of vectors, C c R”, 
can be obtained via Slepian’s construction, i.e., is the code 43 
a group code? The answer to this question lies in the study 
of the symmetries of C, and the determination of whether 

An elementary trellis group code, based on an n- 
dimensional Slepian group code, is created by the selection of 

1) a “seed” vector zu E R”, and 
2) a subgroup of the bi-infinite direct product group A < 

G’. 
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However, many band-limited systems, such as telephone 
channels and digital TV channels, incorporate trellis codes 
based on higher density signal sets, most notably QAM 
modulation. Through an observation attributed to Calderbank 
[2], [3], these signal sets can be viewed as the intersection 
of a bounding region with an infinite block group code. In 
this case, the constituent block group code is generated by an 
infinite group of translations and linear transformations, i.e., 
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groups formed from isometries of R”. This observation brings 
the class of codes based on lattice signal sets [4]-[6] into the 
realm of trellis group codes. 

To properly describe trellis group codes in the QAM en- 
vironment, one must feature Ungerboeck’s “method of set 
partitioning” [7], [8] and similar partitioning ideas. In this 
case, Fomey introduced the notion of a “geometrically uniform 
partition.” In this paper, this notion is extended in a natural 
way from Slepian group codes. 

From the synthesis point of view, a uniform partition arises 
from 

1) a “seed” group code Cu = I’(ze), and 
-2) a group A of linear transforms on W with I? < A as 

a subgroup. 
(There are certain quantifiable restrictions on the pair of groups 
I and A.) The uniform partition is then the finite set of disjoint 
block group codes defined from the orbit of the seed group 
code Cc under the action of the group A. The restrictions 
on the groups I? and A are such that the universal group code 
43 = h(~e) is partitioned into a finite number of disjoint group 
codes, each code being congruent to the seed group cpde Cu. 
From the analysis viewpoint, a partitioning of a block group 
code is uniform if the cells of the partition are congruent group 
codes and the symmetries of the partition, i.e., the symmetries 
of the universal group code C that respect the partition, are 
rich enough to generate the partition. Note that a group code 
can be considered a special case of a uniform partition under 
the restriction that the seed group code is the singlet on set 
co = (201. 

The complete theory of uniform partitions is derived in this 
paper. The development depends on the classical theory of 
“group actions on blocks” [9]. An open problem that is solved 
as a consequence in this treatment is the complete classification 
of the set of geometrically uniform partitions given nested 
group codes CO c C. Once a uniform partition has been 
established, a finite group, called the “partition permutation 
group,” is defined by the set of permutations on the partition 
obtained from the symmetries of the partition. This group 
is often conveniently described by a finite labeling of the 
cells of the partition. The partition permutation group is then 
described in terms of the group of permutations on the labels, 
81, called the “label group”; often the label group has a natural 
algebraic structure. Note that this is a logical extension of 
Fomey’s definition where the cells, or the labels of the cells, 
themselves form a group; under our definition the cardinality 
of the label group can be larger than the number of cells. This 
turns out to be an important attribute of our formulation related 
to the similar fact that the symmetry group of a group code is 
generally larger than the code itself. 

A general trellis group code, based on an n-dimensional 
uniform partition of a group code, is created by the selection 
of 

1) a “seed” group code a3 - l?(zo) c IF!” that forms a cell 
of a uniform partmono id . . 

2) a shift-invariant subgroup of the bi-infinite direct product 
group A < @  where 81 is the finite label group of the 
uniform partition. 

The code is then defined as the set of sequences described by 
A(Ca) (i.e., the set of all bi-infinite sequences drawn from the 
direct product group code C: and permuted to congruent cells 
according to group sequences in A). Of course, in practice, if 
the group code Co is infinite, i.e., the group l? incorporates 
translations, then a bounding region is intersected with the 
elements of the uniform partition to ensure that each cell has 
an equal, finite number of elements. 

A vital component in the study of trellis group codes is 
to understand the nature and structure of the shift-invariant 
subgroups of a bi-infinite direct product group A < 0’. 
There seems to be two basic, interrelated, approaches, one 
based on symbolic dynamics (ergodic theory over finite sets) 
[lo]-[ 141 and a second derived from a modem view of 
linear system theory [ 15]-[ 181. This paper considers shift- 
invariant subgroups using the former approach. While most 
work in coding via symbolic dynamics does not involve a 
group structure, Kitchens studied the fundamental ideas in 
[ 131. In the present paper, these ideas are explained and 
extended for application to the trellis group code problem. 
In particular, a classification of “symbolic dynamic groups” 
or “group systems,” i.e., shift-invariant subgroups of the bi- 
infinite direct product group, and “orbit systems,” i.e., the orbit 
of a seed under a group system, are presented. 

Of special interest is the fact that group systems have a host 
of special properties, a subset of which are inherited by orbit 
systems. Furthermore, an example demonstrates the interesting 
fact that the minimal presentation of a group system, i.e., the 
smallest number of states required to describe the group, may 
be strictly larger than the minimal presentation of an orbit 
system derived from the group.. This fact means, for example, 
that in the analysis problem for a given trellis code, one must 
consider symmetries of the code generated by groups of larger 
(state) complexity than the code itself. 

Once the critical components of the theory of trellis group 
codes, including block group codes, uniform partitions, group 
systems, and orbit systems are developed, the paper presents 
applications of the theory to the problem of rotationally 
invariant trellis coding. First, the elementary trellis group 
codes with PSK modulation are considered. Then, the problem 
of rotationally invariant coding for QAM modulation, using 
general trellis group codes, is studied. In the process of this 
later development, a class of rotationally invariant trellis group 
codes are described that include the popular V.32N.32 bis 
code as a special case. This result, which is consistent with 
the independent analysis of this code by Trott [16], shows 
that this “nonlinear” code in fact is a trellis group code and 
therefore inherits the attributes of this fascinating class. 

The paper is organized as follows: Section II gives an 
overview ,of Slepian’s group codes for the Gaussian channel, 
and introduces the idea of a generating set of isometries for a 
code. Section III discusses geometrically uniform partitions 
of geometrically uniform signal sets and defines isometric 
labelings of these partitions. Section IV introduces some basic 
ideas from symbolic dynamics, which is the, study of shift- 
invariant sequences over a finite alphabet, and describes the 
particular structure one gets when the finite alphabet is in 
fact a group. Orbit systems are classified in the realm of 
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general symbolic systems, and relations are drawn between code’ with a dejining group A and a seed xc. Note that the 
techniques from dynamical system theory applied to codes defining group and the seed of a given group code need not be 
over groups [17], [18], and those from symbolic dynamics. unique. If the code has a defining group A that is finite, then 
Section V shows how the concepts above can be combined to a3 is a jinite group code. If the set X’ is a metric space (such 
describe trellis group codes in a natural manner, and presents as IP) and the ambient group of transformations C consists 
rotationally invariant trellis codes as an application of this of isometries of X’ (i.e., distance preserving transformations 
theory. A knowledge of basic group theory is assumed, as can 11~ - ~11 = /(X(x) - X(y)Il, VZ,~ E X’), then the group code 
be found in any introductory text, e.g., [19]-[21]. h(xo) is called an isometry group code. 

II. BLOCK GROUP CODES 

A. Dejinition of Group Codes 

In 1968, Slepian [l], [22] introduced the original concept 
of a group code for the Gaussian channel. His idea was to 
consider the orbit of a point x E Iw” under a finite group 
A of orthogonal transformations of IP, C = A(x). In this 
paper we broaden the notion of group codes so as to provide 
a common framework for the study of both finite and infinite 
block group codes as well as geometrically uniform trellis 
codes and, more generally, trellis group codes. A Slepian code 
is a finite isometry group code. 

We begin with a few definitions and the notation that we 
will be using through out this paper. Let G  be any group of 
invertible maps (transformations) from a nonempty set S to 
itself. We say that a subgroup of transformations H < G  is 
transitive on a subset A c S if for any two points a, b E A, 
there is a transformation h E H such that h(a) = b; H is said 
to be sharply transitive if such h is unique for each a, b (in 
which case JHJ = IAJ). 

We define the group of symmetries of a subset A C: S (with 
respect to G) as the subgroup of all transformations in G  under 
which the set A is invariant 

Sym (A) = Sym,(A) = {g E G  1 g(a) E A, ‘da E A}. 

We also define the stabilizer of a point a E S to be the 
subgroup 

stab(a) E &abG(a) z {g E G  1 g(a) = a} 

and the stabilizer of a subset A to be the intersection 

Stab (A) = StabG(A) = n Stab (a). 
UEA 

We note that the stabilizer of a point a coincides with the group 
of symmetries of the singleton Stab (a) = Sym ({a}), and that 
the stabilizer Stab (A) of a set A is a not-ma2 subgroup of the 
symmetry group Stab (A) a Sym (A). (Recall that a subgroup 
H < G  is normal, written H a G, if gFIHg = H for all 
g E G.) 

A code over a set X is a (nonempty) subset a3 C X’, indexed 
by the set T (often associated with a time axis) 

An element x E C is called a codeword. The code C is said 
to be jinite or injinite depending on the cardinality 1 a3 I of the 
set C. Suppose C is a group of invertible transformations of 
the set X’. If there exists a subgroup A < C and a point 
x0 E X’ such that C = A(xa), then a3 is said to be a group 

A generator set for a group code C = A(zc) with respect 
to, the seed xc E C is a minimal set of transformations 
A, C Sym (C) such that As(xo) = A(zo).~ If A is any 
defining group of a group code a3 with respect to (w.r.t.) 
a seed ~0, then a generator set for C may be obtained by 
choosing a representative for each left coset3 of the subgroup 
StabA < A. Different choices of coset representatives and 
defining groups lead to different generating sets of a given 
group code. 

If a generator set A, of a group code a3 (w.r.t a seed ~0) 
is itself closed under the group operation, then it is said to 
be a generating group. In other words, a defining group of 
a group code that is sharply transitive (IAl = ICI) is called 
a generating group. Note that a group code may or may not 
have a generating group. 

Given a group code A(xu), the stabilizer StabA < A 
is typically a nontrivial subgroup that is not normal in the 
defining group A. Nevertheless, it is often the case that one 
can chose a system of coset representatives for the left cosets 
that also form a group (A, < A). Moreover, the resulting 
generating group is a normal subgroup of the defining group, 
A, a A. In this case, the group A has a semidirect product 
decomposition where one can write the defining group as the 
semidirect product of the generating group and the stabilizing 
group [20], A = A, >a Stab,l(zo) (see the Appendix for a 
discussion of semidirect products). 

B. Slepian Group Codes 

A block code 63 over R with blocklength n consists of a set 
of vectors in Iw” that span E-P. For a block code we can take 
the index set U = { 1,2, . , n } and C c Iwr. (Note that if 
a block code C C_ R” does not span R”, then with a suitable 
choice of basis, C may be considered as a block code over R 
with block length m, where m is the dimension of the span.) 

We may construct a block group code over I4’ by taking C 
to be the set of all linear transformations of Iw”. A finite block 
group code A(Q) is then specified by a finite group A < C 
and a point xc E Iw”. (With somewhat of an abuse of notation, 
the group of linear transformations A is represented in two 
forms: in “function notation” by {A(.) I X: R” - EP} and in 
“matrix notation” by {M I M E IWnXn}, where X(x) = n/rxx.) 

‘We adopt a terminology similar to Slepian’s original use [l], where the 
codewords are “over the reals R” and “group” is an adjective for the code, 
as in, a Reed-Solomon code is a “linear” code “over Fq,” In this language, 
the “group codes” in 1181 are “group codes over groups” (the codewords are 
composed from group elements). 

*Note that the “generator set” of a group code is a concept strictly different 
from the standard notion of a “generating set” for a group. 

‘A left coset of a subgroup of transformations W  < A is represented by 
X,W E {X,(X(.)) 1 X(.) E W}, X, E A (i.e., X, is applied after). Right 
cosets, WX, are similarly defined (Le., X, is applied before). 
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Since the defining group A is finite, every transformation 
X E A must be of finite order (i.e., X” = I, for some integer 
m, where I is the identity transformation). Hence we may 
confine ourselves to the situation where C consists only of 
linear operators whose determinants are f 1. 

Slepian Group Codes [l], [22] are finite block isometry 
group codes over the reals R, constructed by taking the 
image of a point x0 E R” under a finite group A of 
orthogonal transformations of EP (i.e., MAMA = IJ. Since 
orthogonal transformations preserve the Euclidean norm of 
vectors, a Slepian group code is defined as points on the 
surface of an n-sphere of radius 11x0(] in R”. Note that the code 
depends critically on both the choice of the defining group of 
transformations A and the seed vector, xc [22]. When the block 
length n is small, the Euclidean space code is often considered 
a signal constellation or a signal set (see Example 1). 

C. Isometry Group Codes 

Every isometry of R” is an affine transformation X(x) = 
MAX + CA, where n/r, is an orthogonal matrix [23, p. 3721. 
An isometry is said to be a pure.tran$lation if X(x) = x + CA 
(MA = I). It ’ I IS inear if X(x) = MAX (CA = 0). The set of 
all isometries of R” forms a group under composition denoted 
Zso,. The translation group, 

I, G  {A E zso, 1 A(.) - X(0) = I,} 

is a normal subgroup, 7, a Zso,, and its quotient group, 
Zson/TT, called the linear constituent group [2], is isomorphic 
to the group of all orthogonal transformations of Rn. Given 
any isometry X(x), the translation component is the map 
XT(X) = x + X(0) and the linear component is the map 

k(x) = X(x) - X(O) (A(x) = b(J&>)). 

Slepian only considered finite defining groups A < Zso, 
in order to ensure a finite isometry group code A(xa). Thus 
the symmetry group of a Slepian group code must have a 
trivial translation subgroup AT. However, an alternate method 
of designing a finite block code over R begins by considering 
nontrivial (and therefore infinite) translation subgroups com- 
bined with a finite linear constituent group. Such an infinite 
defining group, A, generates an infinite block isometry group 
code A(xc). Then the finite code, 

AIR. = R n A(xo) 

is a subcode of A(xu) obtained by intersection with a finite 
volume bounding region, R (this view is attributed by Forney 
[2], as well as Biglieri and Elia [3] to Calderbank). Note that 
while’ A(xu)ln is not a group code, it often inherits many 
desirable properties of the infinite group block code A(xu), in 
which it lies. 

D. Properties of Group Codes 

Group codes have several important and distinctive proper- 
ties [ 11, [2], [22]. The following properties apply to both finite 
or infinite block group codes, as well as to trellis group codes 
(to be defined later): 

Fact 1: The code 43 = A(xa) is invariant under A. 
By definition, A < Sym, (C) . 0 
Fact 2: Any point in A(xu) can be used as the seed. 
If xi E A(xu), then Axi = A(xc). Thus a group code 43 is 

determined by its generating group A and any element x E C. 
This implies that in a group code, all the codewords are on an 
equal footing. 0 

F&t 3: A code 43 over X is a group code with respect to C 
if and only if (iff) its symmetry group Symc(C) is transitive 
on C. 

If A is any subgroup of Sym (C) that is transitive on the 
code C, then C = A(xc) for any xc E C. Conversely, if 
C = A(xa), then A is a subgroup of Sym (C) and is transitive 
on C. 0 

Fact 4: The cardinality of a group code 43 = A(xa) divides 
the cardinality of the defining group A. 

Two transformations Xi, Xz E A map the seed xc to the 
same point x E C iff they belong to the same left coset 
of the stabilizer group StabA( This establishes a one- 
to-one correspondence between the codewords and the left 
cosets of StabA( denoted = [A; Xistabn(xu)]:4 hence the 
conclusion follows from Lagrange’s Theorem. 0 

A generator set A, G  A of a group code 43 = A(xo) with 
respect to the seed xo is obtained by selecting a representative 
from each left coset of StabA( Typically, the stabilizer 
subgroup StabA is not normal in A, unless the stabilizer 
subgroup is trivial. To see why this is so for block codes 
over Rn, consider the following argument. If Stab (xc) is a 
normal subgroup of A then it is the stabilizer subgroup of 
every element of A(xc). (For any point x1 E A(xc), xi = 
Ai( the stabilizer is a conjugate subgroup StabA = 
XiStabh(xo)X;l = StabA(x Since it is assumed that the 
code spans R”, one can find a basis for R” in A(xc), and so 
StabA is the stabilizer of all of R” and thus trivial (i.e., 
Staba = {I}). 

As remarked earlier, it is usually the case that there exists 
a generating group A,, which is often normal in the defin- 
ing group A (A, a A). We then have a semidirect product 
decomposition, A = A, >a StabA( 

Fact 5: Isometry Group Codes over IF!” are Geometrically 
Uniform. 

A code a3 C W” is geometrically uniform [2], [24] if for 
every vector, x E C, the sets of difference vectors 

are related by a rotation or reflection (more precisely, given 
any pair xl, x2 E C in the code, there is an orthogonal 
transformation of R” that maps A(x1; C) onto A(x2; C)). 
(In a geometrically uniform universe, the stellar constellation 
viewed from each star is the same, or a mirror image, inde- 
pendent of the choice of stellar system.) 

For an isometry group code C = A(x0) & R”, take 
x1,x2 E C and an isometry X E A, X(x1) = x2. Then the 

4We denote a partition of a set [A; A;], where A = U,A,, A, n A, = 4, 
i # j. For example, the left cosets of a subgroup W  < A forms the partition 
A&W, the right cosets [A; WX;]. We refer to the disjoint subsets {A;} as the 
cells of the partition. 
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linear component XL relates the sets 

A(x2; C) = k(A(xl; C)) 

and so it is easily seen to be geometrically uniform. 
Conversely, given a geometrically uniform code C c R”, 

for any two points xi, x2 E C, there is an orthogonal 
transformation y such that 

A(x2; C) = r(41; C)). 

Then the map 

X(x) = T(” - Xl) + 52 

defines an isometry of R” that moves the point xi to 22 = 
X(x1) and leaves the code invariant, C = X(C). Thus 43 is an 
isometry group code. 0 

This fact may be used to generalize the notion of geomet- 
rical uniformity to spaces other than R”; a code C that lies in 
a metric space is geometrically uniform if its symmetry group 
Symzso (C) is transitive [24]. 

Geometrical uniformity implies that the maximum-likeli- 
hood decision regions, under additive white Gaussian noise 
(i.e., nearest neighbor decision regions under Euclidean dis- 
tance; also called the Vbronoi regions) 

are also geometrically congruent (related by an isometry). 
Slepian called this symmetry condition the “equipunctional” 
property of group codes. This property produces a uniform 
decoder error probability on additive white Gaussian noise 
channels with maximum-likelihood decoding. 

Geometric uniformity also implies that the set of distances 
(using the Euclidean metric) from one codeword to all others 
(i.e., the distance profile) is independent of the “reference” 
codeword. In particular, this implies that the minimum distance 
of the code 

dmin ZE min 
x1,x2EC,x1#xz 11~1 - x211 

= z,c,o~~A(z;c) IHI 
Z 0&$;,) IL4 

where I] . II is the Euclidean distance. Many other symmetry 
properties hold, as described by Fomey [2]. 

E. Examples of Block Group Codes 

We first examine certain signal sets generated by the di- 
hedral group, D,, the symmetries of a regular m-gon. As a 
group of ID,I = 2 m elements, D, can be represented as a 
matrix group generated by the two linear transformations R, 
and 5’ (= ,‘!!&I~) 

D, E (R,, 5’) = {RASi I 0 < j < m, i E (0, l}} 

where, for 0 = 2n/m 

-sin(o) 
cos (0) 

Fig. 1. The isometries R4 and ST/4 

(a) (b) 

Cc) Cd) 
Fig. 2. Slepian signal sets Dd(zo), 20 = [cos(+) sin(4)]‘. (a) 
q5 = O(QPSK). (b) q5 = 7r/16. (c) q5 = r/8 (8.PSK). (d) 4 = 7r/4 (QPSK). 
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and 

s cos PP) sin (2~) 
P 

~ 
( sin (2~) > -cos(2p) . 

The isometry R, is a pure rotation of the plane by angle 0, 
while S, is a reflection about a line at an angle p. 

The dihedral group satisfies the relations, Rz = S2 = I, 
RKwl S = SR,. The subgroups generated by R, and S, 
are isomorphic to the integers modulo m, Z,, under addition, 
(R,) !Z Z,, (S) Z Z2, and ID, < 03, iff n I m. There are 
many semidirect product decompositions of D,. For example, 
the subgroup (R,) a D, is normal and 

D, = (R,) >a (S) ” 2, >a Z2. 

Similarly 

D 2m - - D, M (R2,S) = D, M 2,. 

Example 1 (Phase-Shif Keying): Consider the signal sets 
generated by A = Dg = ( Rs, S) , the symmetries of the square 
(Fig. 1). To generate a Slepian signal set from this group, 
choose an initial seed x0 E W2 and apply each transformation 
X E o[D4 to x0, Fig. 2 shows that the size of the signal 
set is dependent on the choice of x0. If xc is chosen as 
b (4), sin (d~)l” with 4 = 0 modr/4, then IA( = 4, 
and the signal set generated is QPSK. Otherwise, the set has 
eight elements, I A( = 8. To generate 8-PSK requires 
4 # Omod~/4, $ = Omodr/8. Otherwise, the eight points 
are not uniformly distributed around the circle. 



For QPSK, the defining group A = Dq, is also the sym- 
metry group of the code Sym (C), and there is a non- 
trivial stabilizer in A. For example, when 4 = 7r/4 

StabA = StabA = (1, S} 

and 

StabA = StabA = {I, RiS} 

(where xi = R$xo). In this case, a generating group for xi 
may be chosen to be either A, = (Rh) or A, = (RiS, Ri). 
Note that both (Ra) and (RiS, R$ are normal subgroups 
of Dq, and yet are not isomorphic, since (Ra) ?! 24 while 
(RiS, Ri) E Za x Z2. Both cases lead to a semidirect product 
composition, A = (Rd) >a (S) and A = (RZS, Rz) >a (RaS). 

In the 8-PSK case, the defining group, A = Dq, is a 
generating group while the symmetry group of the code is 
strictly larger, Sym (C) = Ds. Although the stabilizer in A 
is trivial, it is nontrivial in Sym (C). For example, when 
4 = r/8, Stab (x0) = (R8S). In this case, (R8) % ZS is 
also a generating group (not contained in the defining group) 
that is not isomorphic to the generating group A = Da. 
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0 0 
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When the angle of x0 does not generate PSK, then A = ID4 
is the only generating set; it is also the symmetry group 
Sym (C) of the group code. q 

Example 2 (Quadrature Amplitude Modulation): Consider 

l l 0 l le’e l l 
I 

(cl (4 
Fig. 3. Infinite signal sets. (a) Integer lattice. (b) Hexagonal lattice. (c) 
Four-point checkers array. (d) Integer lattice translate (QAM). 

the signal sets of Fig. 3, generated by groups that include 
translations. The infinite lattice signal sets of Fig. 3(a) and (b) 
can be generated using only translations and a seed xc = 0 
at the origin. For the integer lattice, Fig. 3(a), the points are 
generated by the group of translations A = (T,, TY), where 
T, E T~,o, TY z To,~, and A is the minimum distance of the 
lattice and the general two-dimensional translation isometry 

Similarly, for the hexagonal lattice, Fig. 3(b), the points are 
generated by the group of translations A = (T,, Ta,2,ad,2). 
In both cases, the symmetries of the signal set have a nontrivial 
linear constituent group (Dq and De, respectively) and can 
be generated by other subgroups of the symmetry group. 
For example, the integer lattice is generated by the groups 
A = (Rd, T,) and A = (S, T,) and the hexagonal, lattice 
is generated by the groups A = (Re, T,) with the reflection 
about 30”, A = (S?r,G,Tz). 

0 0 0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 

+-I-+ 

0 0 0 

0 0 0 0 0 0 0 

l oo l oo 0 0 0 
0 0 0 

(4 (b) 
Fig. 4. Partitioning signal sets via subgroups of index 2. (a) QAM from a 
coset of the integer lattice. (b) QAM partitioned by the four-point checkers 
array. 

Finally, we note that the infinite QAM signal set can also be 
described in terms of a natural partition of the integer lattice 
(Fig. 4(a)). If one generates the (rotated) integer lattice with 
the group 

Fig. 3(c) shows a regular array, an infinite signal set which 
is not a lattice (i.e., the points are not closed under vector 
addition). The four-point checkers array can be generated by 
diagonal translations of QPSK, for example 

A = (D4,T:T; = Tzn,za). 

The infinite Quadrature Amplitude Modulation (QAM) sig- 
nal set is obtained from a group A that generates the integer 
lattice with a seed xc = (A/2, A/2). Thus QAM is based 
on a nontrivial translate of the integer lattice. A finite QAM 
signal set is obtained by imposing a finite bounding region 72. 
(usually a square or a cross); Fig. 3(d) shows the 32 and 64 

and the seed x0 = 0, then the normal subgroup I’ = 
(T,, TY) a A, of index 2, induces a partition of the lattice into 
two congruent signal sets. The subgroup r acting on the seed 
x0 generates the integer sublattice while its coset generates 
the QAM signal set. Similarly, the four-point checkers array 
is associated with a two-way partition of the QAM signal set 
by a subgroup of index 2 (Fig. 4(b)). Such phenomena are 
basic examples of geometrically uniform partitions of a group 
code, which constitutes the main subject of the next section.0 

QAM signal set. 

III. GROUP CODE PARTITIONS AND LABELINGS 

The primary geometric objects (in Rn) that will be needed 
for trellis coding are geometrically uniform (GU) partitions of 

1222 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 5, SEPTEMBER 1995 



ROSSIN et al.: TRELLIS GROUP CODES FOR THE GAUSSIAN CHANNEL 1223 

signal sets. In this section, we construct such partitions and 
develop a language that will characterize labelings that are 
useful for coding. 

A. Groups Actions on Points, Sets, and Partitions 

In the study of isometry group codes over R”, one deals 
with three basic objects: points x E XT = R”, sets C c XT, 
and partitions [C; C,]; the subsets { C; } are the cells of the 
partition. Again, for a uniform framework, consider a group 
G  invertible transformations on a fixed set 5’. Let A c S be a 
set, take a E A as a point of the set, let [A; Ai] be a partition 
of the set. 

The symmetry group of an object is the subgroup of the 
group G  under which the object is invariant 

Symda) - {g E G  I da) = a> 
Sym,(A) = {g E G  I g(A) = A) 

Sym,([A; Ai]) = {g E G  I .9([4 A;]) E [A; Al} 

where 

and 

g([A;Ai]) = MAi), Ai E [A;Ail). 

When the group G  is clear, we write Sym (.) for Sym, (.). 
Note that the image of a set, g(A), is a subset of S and 
the image of a partition, g([A; Ai]), is a partition of g(A). 
Furthermore, symmetries of a set can permute the points within 
the set, while symmetries of, a partition can permute both the 
points within the cells as well as move one cell to another. 

We say that an arbitrary group element g E G  respects the 
set A if either g(A) = A, (g E Sym(A)), or g(A) n A’= 4 
(i.e., A and g(A) are disjoint). The symmetries Sym ([A; Ai]) 
of a partition [A; Ai] are the symmetries of the set A that 
respect all of the cells A; of the partition. Such transformations 
are said to respect the partition. Note that for any symmetry 
g of the partition, two elements a, b E A belong to the same 
cell Ai iff g(u), g(b) E A belong to the same ce!l Aj. 

The stabilizer of an object, w.r.t. G, is the subgroup of G  
that fixes the components of the object 

StabG (u) %  {g E G  
StabG (A) %  {g E G  

StabG([A; Ai]) z {g E G  

da> = a> 
g(u) = u,b’u E A} 
g(Ai) = Ai,‘dAi E [A;Ai]}. 

Again, we write Stab (.) when G  is clear from context. 
Equivalently 

Stab (u) = Sym (u) 
Stab (A) = flaEASym (a) 

Stab ([A; &I) = nA,EIA;A,lSym(Ai). 

The stabilizer of a set maps every point in the set to itself, 
while the stabilizer of a partition [A; Ai] maps each cell of the 
partition onto itself, although the points within the cell may 
be permuted. 

Note that the stabilizer of an object is always a normal 
subgroup of the symmetry group of the object and in particular 

Stab ([A; A;]) a Sym ([A; Ai]). 

In this case, we define the partition permutation group as the 
quotient group 

Rx ([A; A;]) - Sym ([A; Al)/Stab ([A; Al). 

This group represents the set of permutations of the cells under 
the symmetries of the partition. 

Two sets A, A’ C S are said to be congruent (w.r.t. G) 
if there exists a transformation g E G  such that g(A) = A’. 
Congruent sets have conjugate symmetry groups 

Sym (A’) = gSym (A)g-‘. 

If G  is a group of isometries of a metric space S, then the sets 
A and A’ are said to be geometrically congruent. Similarly, let 
[A; Ai] and [A; Ai] be two partitions of the same set A C S. 
Suppose a map 9 E G  has the property that g(u) and g(b) 
lie in the same cell of the partition [A; Ai] iff a and b lie in 
the same cell of the partition [A; Ai]. Then the transformation 
g E G  of the set S induces an invertible transformation from 
the partition [A; Ai] to the partition [A; A:]. We then say the 
two partitions are congruent. If two partitions are congruent, 
then their symmetry groups are conjugates of one another 

Sym ([A; A:]) = ,Gym ([A; A])g-‘. 

B. Group Actions on Blocks 

As we will see, the problem of complete characterization 
of group code partitions is very closely related to the concept 
of group actions on blocks [9], a topic from classical group 
theory which we briefly introduce here. 

Let A be a nonempty subset of a set A 2 S, and let G  
be a subgroup of the symmetry group G  < Sym (A) that is 
transitive on A. A subset B C A is said to be a block of G  if 
for any 9 E G  either the image is contained in B, g(B) c B, 
or is disjoint from B, g(B) n B = 4. Clearly, the entire set 
A, the empty set 4, and the singleton sets { a }, where a E A, 
are blocks of G; these are regarded as the trivial blocks. Here 
are some of the simple properties of blocks. 

Fact 6: If a subset B C S is a block, then for any g E G, 
the following are equivalent: g(B) n B # 4, g(B) 2 B, and 
g(B) = B. 

Thus if g E G  satisfies any of these conditions, then 
g E Sym (B). If a subset B & S is a block of G  then every 
element of g E G  respects B. 0 

Fact 7: If B is a block and H = Sym (B), then for any 
a E B, we have H(u) = B. 

Thus a block B is a group code. cl 
Fact 8: If a E A and H < G, then H(a) is a block iff 

H . Stab (u) . H C H Stab (u) (where H . G  - { hg 1 h E 
H,g E G}) In this case, we have 

Sym (H(u)) = H. Stab(u) H. 

This is because 

g(H(u)) n H(u) # 4 iff g E H. Stab (u) . H 
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and for all g E H . Stab (u) + H 

gH(u) s H(u) iff g E H. Stab(u). 

Note that this condition is satisfied whenever I? a G  or 
Stab(u) < H. q 

Fact 9: Conjugate groups induce congruent blocks. 
Let Gi and Gs be transitive subgroups of G, and let 

G2 = gGig-i. Then, B is a block of Gi with symmetry 
group H = Sym (B) iff B’ = g(B) is a block of Ga with 
symmetry group H’ = Sym (B’) = gHg-I. 0 

Fact 10: If B is a block of G, then the distinct sets 
A; = gi( B), where gi E G, are disjoint, and constitute .a 
partition [A; Ai] of the set A = UiAi = G(B). 

Every cell of the above partition is itself a block of G  
and together, they constitute a complete block system of G  
associated with the block B. 0 

Fact II: A partition [A; A;] of A is a complete block 
system of some subgroup of G  iff the symmetry group 
Symc([A; Ai]) is transitive on A. 

The symmetry group Sym, ([A; Ai]) is the unique, maximal 
subgroup of G  with respect to which the partition is a complete 
block system. The partition [A; A;] is a complete block system 
of G  iff every transformation g E G  respects the partition, i.e., 
G  = Sym,([A; A;]). 0 

Fact 12: Conjugate subgroups lead to congruent complete 
block systems. 

If Gi and Gs are conjugate subgroups of G  that are 
transitive on A C S, with Gi = g-iGsg, then the complete 
block system of Gi associated with any block B c A is 
congruent to the complete block system of Ga associated with 
the block g(B). 0 

Finally, we have the following classical result from the 
theory of group actions on blocks. 

Theorem 13 [9, p. 14, Theorem 7.41: The lattice of sub- 
groups between Stab (a), a E A C S, and G  is isomorphic to 
the lattice of all blocks of the set A that contain the point a. 

Proof of Theorem 13: Associate any block B of G  con- 
taining a E A with the subgroup H = Sym, (B), which 
evidently contains Stab (a), and conversely, associate every 
subgroup H < G  containing Stab (u) with the H(u), which is 
a block by virtue of Fact 8. The fact that this correspondence 
is unique follows from the observations Sym (B)(a) = B 
(see Fact 7) and Sym (H(u)) = H (Fact 8), which holds for 
all blocks B containing a and all subgroups H containing 
Stub(u). 0 

Corollary 14: There exists a subgroup H such that 
Stab (u) < H < G  (proper inclusions) iff there exists a 
block B such that { a } C E3 C_ A (proper inclusions). 0 

C. Group Code Partitions and Geometrically Uniform 
Partitions 

When designing GU trellis codes, one is interested in 
partitioning a GU signal set into congruent subsets. 

Let Cu c XT be a group code over (X, C). Let A < C be a 
subgroup of C that both respects the set Cc (i.e., every X E A 
respects Co; the set X(Cu) is either equal to Cc or disjoint from 
Cc) and is transitive on Cc. Then the group code defined by 

C = A(&) is said to be a group code extension of the subcode 
Cc. If l? < A is a defining group of the group code Co, then the 
distinct sets determined by Xi(&) = C; are mutually disjoint, 
and constitute a partition of the group code C. If 50 is any 
point in the subcode CO, then we have CO = I’(Q) and 

ci = X;(C,) = AJA,‘(Ai(X:o)) 

so that the codes C; form a collection of mutually congruent 
group codes. The resulting partition [C; C;] is said to be a 
group code partition of 43 w.r.t the subcode Cu. If XT is a 
metric space and C is a group of isometries of XT, then the 
codes C and CO are GU codes. In this case, the code C is said 
to be a geometrically uniform extension of the isometry group 
code CO, and the partition [C; Ci] is said to be a geometrically 
uniform partition of the isometry group code 6 w.r.t the 
subcode CO. 

Given a group code C = A(xu) over X, and any subgroup 
I? < A < C, the subcode 

co = r(xo) c A(xo) 

is itself a group code. The orbits of the seed 20 under the 
action of the right cosets of I’ in A yield sets of group codes 

rwo) = wi(xo)) 

that have the same defining group I, and hence form a partition 
of A(zu). In this case, the sets are disjoint but may not be 
congruent. On the other hand, the orbits of the seed zu under 
the action of left cosets of I yields sets of congruent group 
codes 

ci = xi(co) = x,rx;1(xi(50)) 
each with conjugate defining groups &I’&-‘. Although the 
sets are congruent and the union of these group codes is 
the code C, the subcodes C; are not necessarily disjoint. In 
summary, given a subgroup I < A, the right cosets [A; I’&] 
partition into subcodes that need not be congruent while the 
left cosets [A; &I’] yield congruent subcodes that may not 
partition. 

The key to obtaining a group code partition is the identi- 
fication of subgroups I < A that produce subcodes via the 
left cosets that are disjoint. Note that a sufficient (but not 
necessary) condition is that I a A is a normal subgroup. In this 
case, the left and right cosets agree and thus form a partition of 
congruent subcodes [2]. Another sufficient condition is that the 
stabilizer of the point x0 be a subgroup StabA < I [16]. 
Both necessary and sufficient conditions are presented below. 

Consider a subgroup I < A < C and a seed xc E X’ and 
the group codes 43 = A(xo), Co = I’(xo), and Ci = Ai( 
(The Ci are congruent, their union is C, but they need 
not be disjoint.) ,The theory of blocks yields the following 
result regarding group partitions of the code C w.r.t CO (i.e., 
determines when the Q’s are disjoint). 

Theorem 1.5: The following statements are equivalent: 
i) The subgroup r < A defines a group code partition via 

the left cosets, i.e. 

[C; Ci] = [A(xo); w(xo)l. 
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ii) The subset CO c C is a block of the group A. 
iii) 

I’ . StabA . r c I . Staba 

iv) [C; Ci] is a complete block system of A. 
Proof of Theorem 15: The equivalence of i) and ii) is 

clear from the definition of a block and a group code partition. 
The statements iii) and iv) follow from the theory of blocks.0 

Note that the concept of group code extension described 
above is a natural generalization of our original definition of a 
group code, given in terms of a defining group and a seed. In 
the context of group code extensions, the subcode CO C X’ 
plays the role of the seed xc E X’ (a group code is a group 
code extension of a singleton set CO = (x0)). Hence, we have 
the following properties of group code extensions, which are 
analogous to the properties of group codes, listed in Section 
II-D. In the foregoing, take x0 E X’, l? < A, CO = I’(xa), 
C = A(xo), and require that all the elements of A respect 
the set CO (this is a trivial restriction for a group code since 
every element of C respects every point xc E X’). Note that 
[C; C,], where Ci = Xi(&), X; E A is a group code partition 
of the code C w.r.t the subcode CO and that each element of 
A respects every cell of the partition. 

Fact 16 (Fact 1 Revisited): The group code partition 
[C; Ci] is invariant under A. 

This follows since Co is a block of A 0. 
Fact 17 (Fact 2 Revisited): Any cell in [C; Ci] can be used 

as the seed. 
If 431 E [Cc; C,], then 

A(C1) = A(xo) = XJA;‘(Xdxo)) 

and [C; Ci] is the same partition generated by the subgroup 
Xil?X;’ < A and the cell Ci = Xi(&). Thus a group code 
partition [C; Ci] is determined by its generating group A and 
any cell Ci E [C; Ci]. This implies that in a group code 
partition, all the cells are on an equal footing. 0 

Fact 18 (Fact 3 Revisited): A partition [C; Ci] over X is a 
group code partition iff its symmetry group Symc([C; Ci]) is 
transitive on the cells of [C; Ci]. 

If A is any subgroup of Sym, ([C; Ci]) that is transitive on 
the group code partition [C; C,], then [C; Ci] = A(&) for any 
CO E [C; C;]. Conversely, if [C; C;] is generated by CO and by 
A < C that respects Co, then A is a subgroup of Sym ([C; Ci]) 
and is transitive on [C; C;]. 0 

Fact 19 (Fact 4 Revisited): The cardinality of a group code 
partition [C; Ci] (i.e., the number of cells) divides the index 
of the subgroup I < A. 

Two transformations Xi, X2 E A map the seed CO to the 
same cell 43, E [C; C;] iff they belong to the same left coset 
of the stabilizer group StabA (Cc). This establishes a one- 
to-one correspondence between the cells and the left cosets 
of Stab* (Co), hence the conclusion follows from Lagrange’s 
Theorem. 0 

Now consider the case where X’ is a metric space. Fix 
r < A, C = A(zo), and Co = I’(xo) where [C; Ci] is a 
GU partition (i.e., a group code partition in a metric space). 
When the defining subgroup r a A < Zso of the subcode CIJ 

is normal, then the left and right coset partitions are the same 
and we have a GU partition of the isometry group code A(xc). 
This special case is considered in [2]. A GU partition is also 
obtained when ever the subgroup l? contains the stabilizer of 
the seed x0, Stab* (x0) < I [16]. The GU partition of a 
code w.r.t. a subcode need not be unique, as shown by Trott 
[16], who gave an example of a subcode that induces two 
(noncongruent) GU partitions (see Example 4). 

We now use the theory of blocks to provide an answer 
to questions regarding all possible GU partitions. Given a 
subcode Co of a group code 63 C XT, let Rco c Sym (C) 
denote the set of all isometries that respect CO (if X E Rco, 
then X(Co) = Co, or X(Co) n Co = 4). Note that, in general, 
Rco is not a subgroup and that as a subset Sym (Cc) C_ 77,~~. 
We say that two groups hi, As C ‘I& are Co-conjugate if 
they are related by a conjugacy that fixes the subcode CO 
(i.e., As = XAiX-1 for some X E Sym(Cu)). The following 
theorem brings out the relationship between GU partitions of C 
and transitive subgroups of Sym (Cc) contained in the set Rc, . 
Note that in the following, the subcode CO is fixed, while the 
defining group, A, of C varies among the transitive subgroups 
of Sym(C). 

Theorem 20: 
i) There exists a GU partition of a code C w.r.t. a subcode 

CO iff the set RQ, contains a transitive subgroup of 
Sym W. 

ii) The GU partition of the code C w.r.t. CO is unique iff the 
set Rco contains a unique maximaL transitive subgroup 
of Sym(C). 

iii) The number of GU partitions of the code C w.r.t. CO 
is equal to the number of maximal transitive subgroups 
of Sym (C) contained in the set Rco . 

iv) The number of noncongruent GU partitions is equal to 
the number of non- Co-conjugate, maximal transitive 
groups contained in RcO. 

Proof of Theorem 20: If A is any maximal transitive 
group contained in Rc,, then CO is a block of A, so it 
induces a complete block system [C; C;]. Conversely, if [C; Ci] 
is a complete block system with respect to CO, then the 
symmetry group A = Sym ([C; Ci]) of the partition is a 
maximal transitive group contained in the set Rco . Moreover, 
any group A’ < Sym (C) that induces the same complete 
block system is necessarily a subgroup of A. This yields 
a one-to-one correspondence between the maximal transitive 
subgroups of Sym (C) contained in Rc, and distinct complete 
block systems associated with CO, or equivalently, distinct GU 
partitions of 43 w.r.t. C o. This proves assertions i), ii), and iii). 

To establish the last assertion, if Ai and As are maximal 
groups in ‘Rco such that Ai = X-lAsX for some X E 
Sym (Co), then by Fact 11, the complete block system of 
hi associated with the block CO is congruent to the complete 
block system of ha associated with the block g(Ca) = CO. 
Conversely, let X E Sym (C) define a congruence between two 
uniform partitions [C; Ci] and [C; Cl], and let X(Cu) = C:. If 
X2 E Sym ([C; C l]) is a transformation such that Xs(Ca) = 

5Maximal w.r.t. C among subsets of Rc,. 
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Fig. 5. The GU partitions of 8-PSK. 
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Co, then x = Xa; X E Sym (Cc), and we have the conjugacy 

Sym ([C; Ci]) = X-lSym ([C; C:])X 0 

This theorem provides a dual to the classical results in group 
theory presented in Theorem 13 and Corollary 14. 

D. Examples of Geometrically Uniform Partitions 

Example 3 (The GU Partitions of 8-PSK): Fig. 5 shows all 
GU partitions (up to congruence) of S-PSK. For each partition, 
the symmetry group of the subcode 630 is given, followed 
by the stabilizer of the partition Stab ([C; Ci]), the symmetry 
group of the partition Sym (C; Ci]), and the partition per- 
mutation group. Note that for the symmetry and stabilizer 
groups, the group is presented in terms of generators from 
Sym (C) ? Ds, as well as a group isomorphic to it (e.g., 
(S) g Zs). Additionally, for subgroups that are not normal in 
Ds, the right coset partition is also shown. 

Example 4 (The GU Partitions of the Cube): Consider the 
code 43 of the vertices of a cube in R3, with the permutation 
labeling shown in Fig. 6(a). Trott demonstrated that the 
subcode [l], [2] induces two different partitions [16], shown 
here in Fig. 6(b) and (c). This can be accounted for by 
considering the symmetry group Sym (C). The group has 
48 elements, and the subgroup lattice of Sym (C) consists of 
98 subgroups., Potential GU partitions can be considered from 
the subcodes generated by the intransitive subgroups acting on 
the vertex labeled 1, whose length divides 1431 = 8 (note that 
there exist subcodes of length 3 and 6, such as [l, 3,8]). Of 
these subcodes, there are seven of length 2 and six of length 
4. Up to congruence, however, we have the following six 
potential blocks: [l, 21, [l, 31, [l, 71, [l, 2,3,4], [l, 2,7,8], 
and [l, 3,6,8]. There are 16 transitive subgroups of Sym (C), 
and after applying Theorem 20 we see that the blocks [l, 21 
and [l, 31 each induce two noncongruent GU partitions. All 

(a) (b) Cc) 
Fig. 6. The GU partitions of the cube. 

TABLE I 
THE PARTITION PERMUTATION GROUPS OF THE 
TWO-DIMENSIONAL UNGERBOECK PART~IONS 

Partition Stab([@; @,I) PPg 

other subcodes considered are blocks of a unique element of 
the lattice of transitive subgroups. Hence, up to congruence, 
there are eight GU partitions of the cube 

{[1,21,[3,41,[5,81, [6,71),{[1,21,[3,41, [5,61, [7,81}, 
W31, [2,41,~5,71,~6,81~,{[1,31,[2,51,[4,71,[6,81~, 
{[l, 71, [2,81, [3,51, [4,61), {[L 3,681, [2,4,5,71), 
~~1,2,3,41,~5,6,7,81~,~[1,2,7,81,[3,4,5,61}. 0 

Example 5 (The Ungerboeck Partitions in Two Dimensions): 
Consider the group of isometries of R2 described by A = 
(R, S, T,, Ty), where R and S generate D4 (as before), while 
T, and TY are translations in the x and y directions. The 
QAM signal is generated by the action of A on the point 
~0 = (A/2,A/2) (see Example 2). 

The “standard” eight-way partition of the two-dimensional 
lattice translate can then be obtained by considering 
the subcode associated with the normal subgroup 
I? = (Tz2Ty2,Tz2T,-2). The subgroup l? is also the 
stabilizer group Stab ([C; C;]) of the resulting GU partition. 
The group of transformations of this GU partition that is 
induced by the defining group A is isomorphic to the quotient 
group A/I ?Z (Zs x &) x D4, which has 64 elements. In 
this semidirect product decomposition, the normal subgroup 
ID4 corresponds to the group of rotations and reflections of 
the two-dimensional Euclidean space in the usual manner, 
whereas the subgroup 22 x 24 corresponds to the translation 
group (T,, Ty) modulo the stabilizer I. In particular, we may 
associate the element (0,l) E 22 x 24 with the translation 
T, module l? and the element (1,0) E Z2 x & with the 
transformation T,T,Rz modulo l?. The partition permutation 
group has a transitive subgroup of 32 elements, given by 
the quotient group (Rd, S, T$ T,T,R$)/I‘. This partition 
and the above subgroup of 32 elements will be revisited in 
later examples. The symmetries of the 2-, 4-, and 16-way 
Ungerboeck partitions can be characterized similarly. The 
results are summarized in Table I. 
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When the label function determines an isometric labeling, 
the induced metric on C may be derived from a weight 
function, 20: L -+ R+. Let e E C be any fixed element of 
the label set L. Since the label group 1;2 < 81 is transitive, it 
is possible to choose a transformation Wb E 0 for each b E L 
such that Wb(b) = e. But then 

a(6 b) = s(wb(a), Wb(b)) = S(wb(a), e>. 

It follows that if we define the weight function w : L + R+ 
on L by w(a) E 6(a, e), then we have 6(a, b) = W(Wb(U)). 

Given a labeling function for a code in a metric space X’, a 
permutation 7r of the labels that preserves the induced metric, 
@4a), 70)) = qa, b)Y is called a metric-preserving trans- 

formation of the labels. The set of all such transformations 
forms a group .7=t, the metric-preserving group of the labeling. 
For an isometric labeling, the metric-preserving group contains 
the label isometry group 81 < Fl as a subgroup, and in 
many cases, is strictly larger than 61. Note that in this case 
there are permutations of the cells that preserves the distances 
between the cells but are not obtained from isometries of XT. 
These are equivalent to the so-called distance profile-invariant 
transformations described in [25]. 

As any label group 1;2 is required to be transitive, its 
cardinality is no smaller than that of the label set L, and 
is, in general, strictly larger than ICI. Nevertheless, the label 
isometry group 81 often has a sharply transitive subgroup Cl, 
i.e., a transitive subgroup fi < $71 such that ]R 1 = IL\. In this 
case, the label set L may be identified with the label group R, 
so that the elements of the label group act on the labels by (left) 
translation, h(u) = h*u, h E R, a E L = R. This corresponds 
to the situation considered in [2], where an isometric labeling 
was defined in terms of a label set L that was itself an (abelian) 
group. The distinctive feature of our expanded definitionis that 
the label group may have more elements than the size of the 
label set ICI, and need not be an abelian group in general. An 
often beneficial form of isometric labeling is when the label 
set forms a ring (or a module over a ring) and the label group 
is a set of invertible, affine maps 

fl = (9 1 ga,b(Z) E a.x+b,uEU,bEL} 

where U c L is the set of units (i.e., the invertible multiplica- 
tive elements) of the ring (or 24 is a set of invertible linear 
transformations on the module). (See Examples 6 and 7.) 

Finally we note that our definition of isometric labeling is 
related to Loeliger’s notion of a matched labeling [26], where 
he first considered many-to-one mappings from the symmetry 
group to a signal set. However, our definition differs in that we 
introduce an explicit label set L. This explicit labeling is both 
a convenience for building encoders, as well as a necessity for 
certain classes of GU trellis codes whose system of symmetries 
are described in terms of a label group R, with ]R I > ICI, as 
in Example 7 below. 

E. Isometric Labelings 

Forney introduced the basic idea of an isometric labeling 
[2], which we generalize here. Let 43 C_ X’ be any code over 
X, and let C be a group of transformations of XT. Let L be 
a finite set, and consider a many-to-one, onto map, 1: a3 ---t L, 
called the labeling function. That is, we assign a label ui E L 
to each point of the code 43. 

An invertible transformation w of the label set L is said 
to respect the labeling function 1 if there exists a map X E 
Sym,(C) such that Z(X(x)) = w(Z(x)) for all x E C, i.e., we 
have the following commutative diagram: 

1 + L 
h Iw 
c A L. 

A group of transformations is said to respect the labeling 
function I if each of its elements does. If there exists a 
transitive group R of transformations of ,C that respects the 
labeling function Z, then Z is said to be a group code labeling 
of the code 43 with a label group 0. The set of all invertible 
transformations of L that respect the labeling 1 constitutes 
a group, which we denote by El. Clearly, a given labeling 
function 1 is a group code labeling w.r.t. some label group iff 
the group 81 is transitive on L. In this case, any transitive 
subgroup of !& may be chosen as the label group Q. 

Every labeling function I: C -+ L naturally induces a finite 
partition of C, and conversely. Every transformation in the 
symmetries of the partition, X E Symc ([C; CJ), induces a 
map w on the label set L that respects the labeling function 
I, and conversely (as seen by the commutative diagram). 
Moreover, two maps 

induce the same mapping w E 91 iff Xi and X2 belong to the 
same coset of the stabilizer Stabc( [C; C,]). Thus we see that 
the group 81 is isomorphic to the partition permutation group 

Ppg ([C; Ci]) = Sym,( [C; G])/Stab( [C; C;]). 

If C is a group code and the induced partition [C; Ci] is a 
group code partition, then 

Ppg ([C; Gil) (3 81) 

is transitive on the cells which implies that the labeling 1 is a 
group code labeling of C. 

If XT is a metric space and C is a group of isometries of 
X’, a group code labeling 2: 43 + L is said to be an isometric 
labeling of C. Clearly, a labeling 1 of 63 is an isometric labeling 
of 43 if the associated partition is a GU partition. In this 
context, the group 81 is called the label isometry group. 

A labeling function Z : a3 --f L, together with the metric d on 
the set X, induces a metric S on the label set L, i.e., Vu, b E L 

tS(u, b) z min 
m,yEC,l(z)=a,Z(y)=b 

4x3 9). 

Clearly, the induced metric is invariant under any map w E &; 
i.e., for every pair of labels a, b E L, we have S(w(a), w(b)) = 
s(a, b). 

F. Examples of Isometric Labelings 

Example 6 (Phase-Shift Keying): First, consider the QPSK 
signal set (i.e., four points uniformly spaced on a circle 
centered at the origin); the constellation points form a square 
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is, & = R/I’, where 

Fig. 7. An isometric labeling of QAM. 

in I@‘. Suppose that all the four points are labeled distinctly. 
Then the label isometry group 61 coincides with the group 
of symmetries of the code (QPSK signal set). Thus 61 = 
(Rh, S) g Dd. The label isometry group has two sharply 
transitive subgroups, namely, (Ra) g i&, and (Rz, S) ” 
Z2 $ iZ2. We may therefore identity both R and C with any 
of these subgroups, and let the elements of R act on L by 
left translation. Alternatively, we may take the label isometry 
group S1 = (R4, S) = (R4, R&5’) and the label set .C = Zb, 
now regarded as a ring. The rotation R4 acts on L as a 
translation CC H z + 1 mod 4, while the reflection acts as a 
negation z H -zmod4. 

Now consider the 8-PSK signal set (i.e., eight points uni- 
formly spaced on a circle centered at the origin), in which pairs 
of antipodal points have the same label. The corresponding 
label isometry group 61 may be identified with the quotient 
group ( R8, S)/ (Ri) g Dd. This leads to the same choice of 
label groups and group actions as the previous example. For 
isometric labelings of GU partitions, see Fig. 5. In both the 
above cases, the label isometry group 81 coincides with the 
metric-preserving group & of the labeling. 

Example 7 (QAM): Now consider the infinite signal set 
(code) shown in Fig. 7. If one lets the points that are shaded be 
labeled by a “1” while those not shaded be “0” (“magnitude” 
label), together with the 24 “phase” label of each point, one 
recognizes that this is an isometric labeling of the Ungerboeck 
eight-way partition of the two-dimensional lattice translate by 
Zz x j24. Note that the windmill outlined in Fig. 7 can be taken 
as representatives of the cells of the partition. 

If we consider. only the phase labels of these points, the 
label isometry group corresponding to the labeling is seen to 
be identical to the symmetry group of the signal set, as before 

~~ = Sym (C) = (R4, S) “- D4. 

On the other hand, if we also take the magnitude labels, 
then the label set has eight points, and the resulting label 
isometry group 41 is a group of 64 elements, isomorphic to 
the partition permutation group introduced in Example 5. That 

A = (R4, S,T&) 
= (R4,S,T,,T,T,R~,T,2T,2,T,T?/-2) 

and 
l? = (T,2Ty2,T,Ty-2). 

The label isometry group has a transitive subgroup 0 of 32 
elements, which corresponds to the quotient group 

(R4,S,T~2,T,T,R~,T,2T,2,T,T~-2)/ I’. 

If we now identify the label set C with the finite Z-module 
Z2 x Z4, then the elements of R act on it as invertible affine 
transformations. The elements of R may be expressed in the 
form 

(A,b):E:!~Zq-‘a-2~24,2~A5+b 

where A is a 2 x 2 matrix, and b is an element of Za x X4. 
In this notation, we have 

R4modI’=R:z++z+(0,1)t 

SmodI’=S:z++ 

2 T,T,R,,modr-T:xw 

T,2modI’~M:~++~+(1,0)t. 

The group above may be defined in an abstract form in terms 
of its generators 

R = (R,S,T,M) 

together with the following relations: 

R4 = s2 = T2 zz J/f2 = I, 

SR = R3S,TR = RTM, MR = RIM, 
TS = ST, MS = SM, MT = TM. 

We shall study this group again in the next section. 
The isometric labeling shown above provides an example of 

the situation where the metric-preserving group & is strictly 
larger than the label isometry group 61. The permutation 7r 
on the label set L which swaps the elements (0,l) and (1,O) 
while leaving the other elements fixed is a metric-preserving 
transformation of the label set which is not obtained from any 
isometry of the Euclidean space. The metric-preserving group 
& corresponding to this labeling consists of 128 elements, 
and is generated by the label isometry group 91, together with 
the permutation r. 

As mentioned earlier, the set of unshaded points in Fig. 7 is 
an example of a group code which is not a lattice. This signal 
set is a group code since it is generated as the orbit of the point 

1 1 
x0 = 2,$ E R2 ( ) 

under the action of the group of isometries 

A = (S, R, T,T,, TzT,-I). 

It is not a lattice since it is not closed under addition in Iw2. 
However, as it is GU, it is called a regular array. 
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IV. CLASSIFICATION OF SYMBOLIC 
DYNAMIC GROUPS AND ORBIT SYSTEMS 

In this section we develop the concept of a group system 
(or a symbolic dynamic group). We then introduce the orbit 
system of a symbolic dynamic group as the image of a group 
system under its action on a “seed” sequence (that is typically 
over some label alphabet). We begin with an overview of 
symbolic dynamics and provide a framework under which we 
may classify group systems and their orbits within the context 
of symbolic dynamic systems. 

Symbolic dynamics deals with collections of sequences 
satisfying certain constraints. Typically, the constraints are 
expressed in terms of a finite-state machine. We classify 
collections of sequences based on the properties of the finite- 
state machine used to generate them. We study the relationship 
between two such systems by means of sliding block maps, 
which will be described shortly. Two systems are considered to 
be equivalent or conjugate, if there exists an invertible sliding 
block map from one onto the other. 

In this setup, a symbolic dynamic group is a set of sequences 
over a finite group, that is closed under component-wise group 
operation. It turns out that the finite-state machine generating 
a group system has a very special structure, and this yields a 
great deal of insight into the properties of group systems. An 
orbit of a symbolic dynamic group is obtained by regarding the 
elements of the finite group as invertible transformations on 
a set, and using this interpretation to generate sequences over 
the set from sequences over the finite group. This construction 
is a key step in the description of trellis group codes. It turns 
out that orbits of symbolic dynamic groups retain some but 
not all of the structure of group systems. 

In this section, we will see that there are no nontrivial group 
systems over cyclic groups. Indeed, any (irreducible) group 
system over a cyclic group is a collection of all sequences over 
a certain alphabet. Such an unconstrained set of sequences is 
called a fullshift, and may be described by a trivial, one-state 
machine with several self-loops. Likewise, we will show that 
all (irreducible) group systems over dihedral groups may be 
decomposed into two components, one of which consists of 
unconstrained sequences generated by a one-state machine, 
while the other is a rate l/2 binary convolutional code with 
block length 2. As a consequence, we will see later that 
there are no interesting rotationally invariant codes over two- 
dimensional M-PSK signal set. 

On a more positive note, we shall obtain useful structural 
characterization of orbits of symbolic dynamic groups. It is 
shown in [13] that group systems are characterized by two 
distinctive the properties: i) every irreducible group system has 
a unique, minimal finite-state machine generating it; ii) given 
an irreducible group system, there exists an invertible sliding 
block map from the group system to a set of unconstrained 
sequences (fullshift). The latter property is described by saying 
that every group system is conjugate to a fullshzji. The most 
significant result that will be established in this section is that 
although orbits of symbolic dynamic groups may not have 
unique, minimal finite-state machines generating them, they 
are still conjugate to a fullshift. This means that it is possible to 

design an encoder from a set of unconstrained sequences to the 
given orbit system, together with a noncatastrophic decoder. 
The proof of the above result will also shed some light on the 
structure of orbit systems of symbolic dynamic groups. 

A. A Review of Symbolic Dynamics 

An alphabet A is a finite set, whose elements are referred 
to as symbols or letters. A string, word, or block over the 
alphabet A is an object of the form ara2as . . . a,, obtained 
by concatenating finitely many symbols pf the alphabet, where 
a symbol may be repeated if necessary. By concatenating 
infinitely many symbols of the alphabet (with repetitions), we 
obtain bi-injmite sequences such as . . . a-aa-laoala . . ., left 
semi-infinite sequences such as . . . a-ya-aa-1, and right semi- 
infinite sequences of the form aoalaz . . . over the alphabet A. 
Henceforth, we shall use the term sequence to denote either a 
bi-infinite or semi-infinite sequence, such as those described 
above. 

A collection of strings over an alphabet A is called a formal 
language over A. It is a subset of A*, the collection of all 
strings over A (including the empty string). A collection of 
(infinite) sequences over A is referred to as a sequence space. 
A sequence space is said to be bi-infinite, left-semi-infinite, 
or right-semi-infinite depending on the kind of sequences it 
contains. We denote the set of all bi-infinite sequences by A"; 
the set of right-semi-infinite sequences by A+", and the set 
of left semi-infinite sequences by A-". 

We turn the sequence space d" into a topological space by 
providing it with a topology whose open sets are generated by 
cylinder sets of the form {X E A" 1 5, = a}, one for each 
n = 0,&l, &2,. . . ) and a E A [27], [28]. This is the standard 
topology inherited by the product space from the discrete 
topology on the set A. (As a result of finiteness of the alphabet 
A, the sequence space A" turns out to be a compact, Haus- 
dorff, separable, metrizable, totally disconnected topological 
space.) Under this topology, the shift map g, [~(zIJ)]~ = zi+i, 
is a homeomorphism of d". 

A symbolic dynamic system or a subshif over the alphabet 
A is defined to be a topologically closed, shift-invariant 
subset of A". The subshift d” itself is more commonly 
referred to as the full I Al-shaft or simply, a fullshift. A subset 
S c A" is topologically closed iff it contains all sequences 
x E A" which have the property that for any pair of integers 
-CXZ < m 5 n < 00, there is a bi-infinite sequence y E S 
such that ~1: = ~1%. The concept of topological closure in 
symbolic dynamics corresponds to the notion of completeness 
[15], [18], [29] in dynamical systems theory. In symbolic 
dynamics, the condition of topological closure is imposed 
to rule out pathological shift-invariant subsets of A". The 
following examples illustrate shift-invariant subsets that are 
not closed. 

Example 8 (Topological Closure): Let A = { 0, 1 }, the 
binary alphabet. 

a) Consider the shift-invariant set 

S = {x E A” 1 3 n E Z such that xi = . 
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The set S does not contain the all-zero sequence (or the all-one 
sequence), but every finite string of the all-zero sequence (and 
the all-ones sequence) is contained in some sequence in S. 
Thus the topological closure of the S is obtained by adjoining 
these two sequences to it. 

b) Alternatively, let S be the shift-invariant set consisting of 
all (bi-infinite) binary sequences with a finite and even number 
of ones 

S= xEd’I~x~<~, Cxi=Omod2 
i i 

Every finite string contained in every bi-infinite sequence over 
A is embedded in some sequence of S. Hence, the closure of 
S is the entire fullshift over the binary alphabet. 0 

A subshift S is fully characterized by the set of all finite 
strings embedded in its bi-infinite sequences. This set of strings 
is called the constraint set of the subshift, denoted C(S). (We 
also use C-,(S) and C +oo(S) to denote, respectively, the 
set of all left-semi-infinite and right-semi-infinite sequences 
embedded in bi-infinite sequences in the subshift S.) 

A function 4 from a subshift S to a subshift 7 over the 
alphabets A and B, respectively, is said to be a sliding block 
map (or more specifically, an n-block map) if there ‘exist 
integersm,a>Oandafunction$:A”-+B,n=m+a+l, 
such that for-all i E iZ and all x E S, the ith component of 4(x) 
is given by $(~i-~xi-~+r . . . ~i+~). Hedlund’s theorem [30] 
asserts that sliding block maps are precisely the continuous, 
shift-commuting maps between the topological spaces S and 
7. This implies that if a sliding block map has an inverse, then 
the inverse is also a sliding block map [lo], [12], [28], [31], 
[32]. An invertible sliding block map is called a conjugacy, 
and two subshifts related by a conjugacy are said to be 
topologically conjugate. 

Let B be a finite, directed, labeled graph, and let S be the set 
of label sequences generated by bi-infinite paths on this graph. 
The fact that the graph is finite ensures us that the set S is 
shift-invariant and topologically closed. Any subshift that may 
be described in terms of a finite graph in the above manner 
is referred to as a sojic system or soft shif. For example, 
the subshift over the binary alphabet { 0,l } which consists 
of all binary sequences in which zeroes are always separated 
by an even number of ones is a sofic system called the even 
shift. Fig. 8(c) depicts a directed, labeled graph that generates 
this subshift (where a = 0 and b = 1). The set of all binary 
sequences in which adjacent zeroes are separated by a prime 
number of ones is an example of a system which is not a sofic 
system. 

If a finite, labeled graph B has the property that any bi- 
infinite label sequence is generated by at most one bi-infinite 
path on the graph, then the graph B is said to be a conjugacy- 
inducing presentation of the associated sofic system S. If 8‘ 
is a conjugacy-inducing presentation of a sofic system S, then 
there exists an invertible sliding block map from the set of all 
paths on the graph D onto the sofic system S [ll], [14], [27], 
[28]. This means that the given sofic system is topologically 
conjugate to the set of all bi-infinite paths on the graph 6. A 
sofic system which has a conjugacy inducing presentation is 
called a shift of $nite type (SFT). 

SFT BMP CFS DPDF 

Fig. 8. Examples of irreducible sofic systems. 

Shifts of finite type are in a sense the simplest and most 
useful class of subshifts, both from the point of view of 
symbolic dynamics and coding. A sofic system that is not 
an SFT is called a proper sojic system. The sofic systems 
in Fig. 8(b), (d), (e), and (f) are examples of SFT’s, while 
those in Fig. 8(a) and (c) represent proper sofic systems. In the 
dynamical system terminology, a discrete-time system whose 
trajectories obey the SFT property are said to be strongly 
complete [15], [18], [17]. 

Let S be an arbitrary subshift (not necessarily a sofic 
system). If z is a left-semi-infinite sequence, we define the 
future of x to consist of all right-semi-infinite sequences y 
such that xy is a sequence in S. More precisely 

IF(x) = {y E d+m ( xy E S}, x E A-“. 

Similarly, the past of a right-semi-infinite sequence y may be 
defined as the set P(y) of all left semi-infinite sequences x 
such that wx is a sequence of S 

P(y) = {x E A-” ] xy E S}, y E A+“. 

We can extend this notion by defining the future and past of 
finite strings, and the &step future and k-step past of strings 
and semi-infinite sequences in the following manner: 

IF(w) = {y E d+” I WY E C+,(S)),w E A* 
P(w) = {x E A-” ) xw E S},w E A 

Fk(x) = {y E A” 1 xy E C(S) u C-,(S)}, x E A* u d-” 

p&j) = {x E dk ) sy E C(S) U c+,(S)}, y  6 A* U A+“. 

A sofic system may be characterized intrinsically, as a 
subshift whose (semi-infinite) sequences have only finitely 
many distinct futures, or equivalently, finitely many pasts [31], 
[27], [28]. That is, the sets 

and 
F(x) Ix E C-co(S)~ 

WY> I Y E C+m(S)l 

are finite. Similarly, an SFT is intrinsically characterized by 
the property that there exists an integer N > 0 such that for 
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any left semi-infinite sequence 

*.*X-32-22-1 E C-,(S) 

minimal presentation, known, respectively, as the right Krieger 
cover and left Krieger cover of the sofic system [33], [34]. 

If a subshift has the property that its left-semi-infinite 

we have 
sequences have disjoint futures, i.e., if for any two left-semi- 
infinite strings 5 and y, the futures F(z) and F(y) are either 

F( *. .24242-1) = F(x-N . . .x-22-1). identical or disjoint, then we say that the subshift has the 
disjoint future property. Similarly, if the right-semi-infinite 

This is equivalent to the condition that for any right-semi- sequences of a subshift have disjoint pasts, then subshift is 
infinite sequence ~1~2~3.. . E C+,(S), we have said to have the disjoint past property. 

Two bi-infinite sequences IC and y of a subshift S are said 
lP(CE1X21C3 *. *) = P(XlLE2 * * * XN) te be past-equivalent if 

and amounts to saying that the subshift has a memory of a 
finite duration. From this definition it is clear that SFT’s form 
a subclass of sofic systems. An SFT that satisfies the.above 
condition with N = n is called an n-step SFT. 

Although the fact that a subshift has a finite number of 
distinct futures implies that it has a finite number of distinct 
pasts and vice versa, the cardinality of the two sets may 
be different. Consider, for example, the sofic system shown 
in Fig. 8(b). Since the system is a one-step SFT, the future 
of any left-semi-infinite sequence is determined by its last 
symbol, while the past of any right-semi-infinite sequence is 
determined by its first symbol. It is easily seen that this sofic 
system has two distinct futures, represented by F(a) = IF(c) 
and F(b), but three distinct pasts, given by F’(a),lP(b), and 
F(c). 

A labeled graph B is said to be forward-deterministic or 
just deterministic if no two outgoing edges from the same 
state have the same label. If all incoming edges into the 
same state have distinct labels, then the graph is said to 
be backward-deterministic. If a graph is both forward- and 
backward-deterministic, then it is said to be bideterministic. 
Any sofic system may be presented either by a backward- 
deterministic or a (forward-) deterministic graph, while only 
some sofic systems have bideterministic presentations. While 
the proper sofic system in Fig. 8(c) and the SFT’s depicted 
in Fig. 8(e) and (f) clearly have bideterministic presentations, 
the proper sofic system in Fig. 8(a) and the SFT’s in Fig. 8(b) 
and (d) do not admit any bideterministic presentations. 

Given a labeled graph G  presenting a sofic system S, we 
define the future of a state s of 6 to be the set of all (right- 
semi-infinite) label sequences generated by paths originating 
at state s. The past of a state s is likewise defined to be 
the set of all label sequences generated by left-semi-infinite 
label sequences generated by paths terminating at state s. 
If two states of g have either the same past or the same 
future, then the two states may be merged together, without 
changing the sofic system represented by it. If a graph is 
forward- (backward-) deterministic, then the reduced graph 
obtained by merging all states with identical futures (pasts) 
is again forward- (backward-) deterministic. A labeled graph 
representing a sofic system is said to be minimal if no two 
states of the graph may be merged without changing the 
sofic system represented by it.6 Every sofic system has a 
canonical forward-deterministic and backward-deterministic 

6Note that our notion of minimality is based on the above “merger” 
property, and not on the number of states in the graph. 

and are said to be future-equivalent if 

In general, sequences of a subshift could be past-equivalent 
without being future-equivalent, or vice versa. However 

Proposition 21: The following statements about a subshift 
S are equivalent: 

i) The subshift S has the disjoint future property. 
ii) The subshift S has the disjoint past property. 
iii) Two sequences of the subshift S are past-equivalent iff 

they are future-equivalent. 
Proof of Proposition 21: Follows directly from the def- 

initions. q 
We call subshifts having disjoint pasts, or equivalently, 

disjoint futures, the DPDF systems. The SFT’s in Fig. 8(e) 
and (f) are examples of DPDF systems. If a sofic system S 
is DPDF, then it turns out that the states of its right Krieger 
cover have disjoint futures and the states of its left Krieger 
cover have disjoint pasts. On the other hand, we will see later 
that the states of a labeled graph can have disjoint pasts as 
well as disjoint futures, but the sofic system represented by it 
is not a DPDF system. 

A subshift S is said to be irreducible or topologically 
transitive if for any two strings w and y in the constraint 
set C(S), we have a string II: such that the concatenation wxy 
is also a string in C(S). Indeed, a sofic system is irreducible 
if it is presented by an irreducible graph. Moreover, we have 
the following interesting and helpful result from [35]. 

Fact 22: If a labeled graph G  generates an irreducible sofic 
system S, then an irreducible component of 6 generates S. 

See [35, Lemma 11. 0 
All the sofic systems in Fig. 8 are irreducible. The above 
notion of irreducibility is akin to the notion of controllability 
[15], [ 181, [29] in the theory of dynamical systems. We have 
the following well-known minimality result about irreducible 
deterministic presentations of irreducible sofic systems. 

Fact 23: Every irreducible sofic system S has an irre- 
ducible, deterministic presentation 60 with the following 
properties: 

i) The future of every state of 40 coincides with the future 
of some left semi-infinite sequence in C-,(S). 

ii) If G  has an edge labeled a from state s to state t and II: is 
any left semi-infinite sequence such that F(s) = IF(z), 
then F(t) = IF(za). 
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(a) @I 

Fig. 9. A nonirreducible SFT with a nonminimal BP. 

iii) B0 is a minimal presentation of S. 
iv) Given any other irreducible, deterministic graph 6 

generating the sofic system S, there exists a label- 
preserving graph homomorphism 4 from 6 onto & 
which maps every state of 6 to the unique state of 40 
that has the same future. 

See [lo], [12], [31]-[331. 0 
As a consequence of the second conclusion above, if S is an 

n-step SFT, then every path on the graph generating a given 
label string of length n or more has a unique terminal state. 
Hence, if S is an SFT, then every (infinite) label sequence in 
the system is produced by a unique path on the graph &. 

The last conclusion in Fact 23 implies that for a given 
irreducible sofic system, the graph 60 is unique up to a label- 
preserving graph isomorphism. This canonical graph is called 
the right Fischer cover of their reducible sofic system S [33]. 
The right Fischer cover of an irreducible sofic system is 
a subgraph (in fact; an irreducible component) of the right 
Krieger cover. Similar statements are true with regard to 
backward-deterministic presentations and lead to the notion 
of the lef Fischer cover of irreducible sofic systems. 

From Fact 23, it follows that if either the left or the right 
Fischer cover of an irreducible sofic system turns out to be 
bideterministic, then the two Fischer covers are identical, 
and constitute the unique, irreducible, bideterministic minimal 
presentation of the given sofic system. An irreducible sofic 
system with the above property is said to be a Bideterministic 
Minimal Presentation system, or simply a BMP system. It is 
clear that an irreducible sofic system is a BMP system iff it 
has some minimal, bideterministic presentation (BP). In fact 

Proposition 24: If an irreducible sofic system admits any 
bideterministic presentation, then it is a BMP system. 

Proof of Proposition 24: See the Appendix. q 
The proper sofic system in Fig. 8(c) and the SFT in Fig. 8(e) 

and (f) are BMP systems since the given representations are 
themselves bideterministic and minimal. As indicated before, 
the proper sofic system in Fig. 8(a) and the SFT’s in Fig. 8(b) 
and (d) do not have such presentations. The nonirreducible 
SFT in Fig. 9(a) has a bideterministic presentation as shown in 
Fig. 9(b), but no bideterministic presentation of the system can 
be minimal. This brings out the significance of irreducibility 
in Proposition 24. 

We now proceed to relate the DPDF property to the BMP 
property of irreducible sofic systems. 

Proposition 25: An irreducible sofic system is a DPDF 
system iff it is an SFT and a BMP system. 

Proof of Proposition 25: See Appendix. Cl 
Note that if C is a DPDF system with a bideterministic 

minimal graph 8, then 6 is the unique minimal presentation 
of 4, and has the smallest number of states among all the 
graph presentations of B [34]. Thus DPDF systems exhibit a 
rather strong form of minimality. 

The BMP system in Fig. 8(c) is not an SFT and hence not 
a DPDF system. The SFT’s in Fig. 8(b) and (d) are not BMP 
systems and, consequently, they are not DPDF systems either. 
The irreducible SFT’s in Fig. 8(e) and (f) are BMP systems 
and, hence, they are also DPDF systems. 

Our proof of Proposition 25 (presented in the Appendix) 
makes. use of the notion of Fischer cover of irreducible sofic 
systems. The proof may be carried out without the irreducibil- 
ity assumption, by working with Krieger covers in place of 
Fischer covers. This leads to the following amplification of 
Proposition 25 (a result essentially contained in [34]). 

Proposition 26: For a sofic system S, the following state- 
ments are equivalent: 

i) S is a DPDF system. 
ii) S is an SFT and its right Krieger cover is bideterministic. 
iii) S is an SFT and its left Krieger cover is bideterministic. 

Proof of Proposition 26: See [34, Theorem 11. 0 
TWO sliding block maps 7~1 : 5’1 + Ti and 7~2 : 5’s -+ T2 

are said to be equivalent or conjugate if there exist topological 
conjugacies 4 : S1 -+ Sa and 0 : TI -+ Tz such that 
0 o ~1 = 7r2 o 4, that is, the following diagram commutes: 

2vo 
S2 2 T2. 

Given any subshift S, we define a subshift S]“] which consists 
of sequences of n-blocks of the form 

. . . ~1”-;13~1~~2~1~-‘~1~~l~+1 * *. 

for every sequence z E S. The shift S[“l is said to be 
a higher block system of S [lo], [12], [28], [31], and is 
topologically conjugate to the subshift S. This is a very 
important construction in symbolic dynamics, and is used to 
show any SFT is conjugate to a one-step SFT, and that any 
sliding block map is equivalent to a l-block map (a sliding 
block map with window size 1). 

We say that a subshift is CFS if it is conjugate to a fullshift 
over some alphabet. Sofic systems with this property are 
important from the point of view of coding, where one deals 
with the problem of encoding arbitrary message sequences 
(fullshifts) into constrained sequences (subshifts) in such a 
way that transformation from one representation to another 
is accomplished by means of a simple, reliable scheme (a 
sliding block map). Clearly, if a subshift is CFS, then it is an 
irreducible SFT. However, the irreducible SFT’s of Fig. 8(b) 
and (e) are not CFS. This follows from the fact that for an 
irreducible SFT to be CFS, it is necessary (but not sufficient) 
that its topological entropy [lo] (the logarithm of the largest 
eigenvalue of the adjacency matrix of the minimal determin- 
istic presentation) is the logarithm of a positive integer. The 
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SFT’s in Fig. 8(d) and (f) are CFS because the mapping that 
takes label sequences to the corresponding state sequences on 
the graph establishes a conjugacy between the given SFT and 
the full 2-shift. These examples show that SFT’s could be 
DPDF systems without being CFS and conversely. 

B. Symbolic Dynamic Groups 

Suppose the alphabet under consideration is a finite group 
G. Then the fullshift Gz may be regarded as a group under a 
component-wise group operation, thereby furnishing it with a 
direct product group structure. A subshift S C G’ is said to be 
a symbolic dynamic group or a group system if S is a subgroup 
of the fullshift Gm under the above group structure. It may be 
seen that the group operation is a continuous function in the 
topology of symbolic dynamic systems and that the shift map 
is a group automorphism of the group system under the direct 
product group structure. 

As shown in [13], [17], [18], group systems exhibit some 
very remarkable properties. First of all, they possess a strong 
form of the DPDF property: For any two strings or sequences 
IC and y embedded in sequences of a group system S, if the 
concatenation 

is a string or sequence embedded in a bi-infinite sequence of 
S, then so is the concatenation 

YLhlF 
This means that any two k-step futures (k > 0) or infinite 
futures of two strings or (left)-semi-infinite sequences are 
either identical or disjoint. In fact, if e is the identity element 
of the group G, then the k-step future (k > 0) of the string 
en (n > 0) is a normal subgroup of7 G”. Furthermore, the 
infinite future of en is a normal subgroup of G’+. In fact, 
the same is true of the k-step future and infinite future of the 
left-semi-infinite sequence ez- as well. The (finite or infinite) 
future of any other string or left-semi-infinite sequence is a 
coset of the normal subgroup corresponding to the future of 
the identity sequence of the same length. This leads to 

Fact 27: All group systems are SFT’s with the DPDF 
property. 

The fact follows from the preceding statements on the future 
sets, together with the finiteness of the alphabet G  [13]. 0 

The minimal graph B generating a group system S has the 
following structure. The states of the graph have the group 
structure given by Gz+/IF(e”-). This means that whenever 
there is an edge labeled al from state s1 to state tl and an 
edge labeled us from state s2 to state t2, there exists an edge 
labeled ai * uz from state s1 4 s2 to the state tl * t2. The set of 
labels P of the self-loops around the identity state is a normal 
subgroup of G, called the parallel transition subgroup. If there 
is an edge from a state s to a state t in the graph, then there are 
exactly IP( edges from s to t, whose labels constitute a coset of 
the parallel transition subgroup P. The fullshift Pz is a group 
system that forms a normal subgroup of the system S, and is 

7Here it is necessary to assume that every letter of the alphabet G  occurs 
in some sequence of the subshift S. 

called the parallel transition shift. The quotient group S/P’ is 
a group system over the quotient group alphabet G/P, which 
is referred to as the quotient group shift. 

The set of labels of all outgoing edges of the identity state 
El(ez-) is also a normal subgroup of G, called the (forward) 
input group [ 181. The set of labels of all outgoing edges of any 
other state is a coset of this subgroup. We may similarly define 
the backward input group and make an analogous statement 
regarding its cosets, by focusing our attention on the incoming 
edges of the states in the graph. If the group system is a l- 
step SFT, then all the edges of its minimal graph have distinct 
labels, so that the every state may be identified with the coset 
corresponding to its outgoing edges or incoming edges, which 
yields an isomorphism between the groups concerned. 

From the characterization above of the minimal graph 
generating a group system Si which is also a l-step SFT, 
it follows that S1 is conjugate, by means of a one-block 
map with a one-block inverse, to the product of the group 
system S/P’ = S{ and the full (PI-shift. The minimal graph 
generating Si is the same as that of Si, with the modification 
that each set of parallel edges is replaced by a single edge, 
labeled by the corresponding coset of P. Since this graph has 
no nontrivial parallel edges and since all its edges are distinctly 
labeled, it follows that the group system Si is conjugate, by 
means of a 1-blockmap with a 2-block inverse, to the bi- 
infinite state sequences generated by the paths on the graph. 
But this subshift is readily identified with the group system 
S:/F” = Sa, where F is the input group of the group system 
Si, Thus we see that the original group system S1 is conjugate 
to the product of the group system Sz and the full lpi-shift. 
Unless the input group of S1 is trivial, the group system SZ has 
a strictly smaller alphabet than the group system &. We may 
thus proceed by induction to show that the given group system 
S is conjugate to the product of several fullshifts and a group 
system S, whose input group is trivial. If the group system S1 
is irreducible, then so is S,, which implies that the minimal 
graph of S, consists of a single state with a self-loop labeled 
by the identity element of the (group) alphabet. This shows 

Fact 28: Every irreducible group system is conjugate to a 
fullshift, the size of whose alphabet is equal to the size of its 
input group. 

The argument above is due to Kitchens and is presented 
in slightly greater generality in [ 131. From the above results, 
it follows that irreducible symbolic dynamic groups lie in the 
intersection of DPDF and CFS systems and thus exhibit all the 
nice properties of subshifts defined in the previous section. 0 

The best known way of systematically enumerating group 
systems is by means of cycles, which is analogous to the 
characterization of convolutional codes in terms of generator 
matrices. A bi-infinite sequence over G  is called a cycle if 
it is equal to the identity element at all but finitely many 
of its coordinates. Given a set of cycles, there is a unique 
minimal group system that contains them, called the group 
system generated by the set of cycles. Given a finite list of 
cycles, the minimal graph of the group system generated by 
these cycles may be obtained by using techniques discussed 
in [36]. Every irreducible group system is generated by some 
finite set of cycles, and hence may be realized in this manner. 
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The characterization of irreducible group systems in terms 
of cycles has many other virtues. It has been used to show 
that the minimal graph of an irreducible group system has 
the structure of a product of de Bruijn graphs [18], [36]. 
We will presently use the cycle characterization to provide 
a complete classification of irreducible group systems over 
cyclic groups Z, and dihedral groups D,. As we will see, 
these group systems are crucial in describing GU trellis codes 
over two-dimensional PSK signal sets. 

Theorem 29: Every irreducible group system over a cyclic 
group Z, is a fullshift. 

Proof of Theorem 29: See the Appendix. cl 
This means that every irreducible group system over a cyclic 

group is a set of unconstrained sequences, generated by a 
trivial, one-state graph, with one or more parallel transitions. 
Recall that any group system may be decomposed into a 
parallel transition shift, representing a set of unconstrained 
sequences generated by a one-state graph, and a quotient 
group shift, which has a trivial parallel transition group. The 
following result shows that if the alphabet under consideration 
is adihedral group, then the latter component is an irreducible 
group system over 22 @  Zs, which is simply a rate l/2-binary 
convolutional code with block-length 2. 

Theorem 30: The quotient group shift of an irreducible 
group system over a dihedral group is an irreducible group 
system over a group isomorphic to’ Zz $ ZZ. 

Proof of Theorem 30: See the Appendix. 0 

C. The Orbit System of a Symbolic Dynamic Group 

We shall now formally introduce the concept of an orbit 
of a symbolic dynamic group. Consider a finite group G  that 
acts on a set X. If A < G” is a group system over G  and xa 
is an element of the set X, we define a subshift over X by 
letting each component of the sequences in A act on the fixed 
element 20 E X. This subshift is denoted R(xu) and is said 
to be the orbit system generated by the group system A and 
the seed ~0. That is, 2 E A(Q), where 

x = . . . (~o>g-~(~o)go(~o)~l(~o) . . . E x” 

for each . . . g-igugi . . . E S. This is a generalization of 
Slepian’s notion of (finite) group codes and has proved to be 
useful in providing insight into the nature of certain “almost 
linear” codes [37]. 

We shall now provide a classification of trellis group codes 
along the same lines as we did for group systems. The main 
difference between a group system and an orbit of asymbolic 
dynamic group arises from the fact that the minimal graph 
corresponding to the orbit system may be strictly smaller than 
the minimal graph of the group system generating it. When 
this happens, the orbit system may or may not inherit some of 
the properties mentioned above from its parent subshift. We 
first consider an example of an orbit system whose minimal 
graph differs from that of the group system generating it, 
but which nevertheless continues to have all the properties 
of group systems above. We will then present an example in 
which the orbit system loses the DPDF and BMP properties, 
but continues to be CFS. 

D. Examples of Orbit Systems 

Both examples are based on the following group G  of 32 
elements, introduced in the previous section in connection with 
Ungerboeck eight-way partition of two-dimensional integer 
lattice. Recall that this group be may regarded as a set of 
affine transformations acting on the finite module Z!s @  ZJ. 
The elements of G  = (R, S, T, &f) may be expressed in the 
form 

where A is a 2 x 2-matrix, and b is an element of 22 x Zq. 
In this notation, we have the following representation for the 
generators of G: 

R : 3; H z + (0, l)t 

M : x H x + (1, O)t. 

The ‘group may also be described in terms of its generators 
G  = (R, S, T, M) and relations 

R4 zz S2 z T2 = J/f2 = I, 

SR = R3S, TR = RTM, MR = RM, 
TS = ST, MS = SM, MT = TM. 

Example 9 (An Orbit System with a Minimal BP}: IIie 
smallest group system over the group alphabet above that 
contains the cycle of length 3 given by [R2T, R3SM, ST18 
is given by the g-state graph shown in Fig. 10 (the first label 
on each edge). The second label shows the image of the group 
action if this group system is applied to the’ seed 20 = (0, O)t 
(i.e., the graph is labeled with “group element/image”). Note 
that ~0 has a nontrivial stabilizer (S, T), and that the orbit of 
20 gives the module Za x Zb. The presentation of the orbit 
system given by this graph is not backward-deterministic, and 
has states with identical futures. By merging all such states, 
we obtain a bideterministic minimal graph given by Fig. 11. 
It then follows that the orbit system in question is a BMP 
system.It is also easily seen that it is conjugate to the full 
4-shift, so that it is a DPDF system as well as CFS. It is 
not hard to prove that no group system over the above 32- 
element group alphabet whose minimal graph has just four 
states generates the subshift in Fig. 11 as its orbit system. 
However, the smallest group system over the same alphabet 
that contains the cycle [R2T, RS, STM] is given by the 8- 
state graph shown in Fig. 12, by the first set of labels. The 
orbit system generated by this group system under the action 
on the same seed 20 does not collapse. 0 

Example 10 (An Orbit System Without a BP): Let us now 
consider the smallest group system over the same alphabet that 

sThis notation is used to represent the bi-infinite sequence 

I, I, R2T, R3SM, ST, I, I,‘. 
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Fig. 10. The group system generated by [R2T, R3SM, ST] 

contains the finite cycle [S, RS, T]. This system is generated 
by the g-state graph shown in Fig. 13. Upon application of the 
same seed (0, O)t to the group system, we obtain the graph 
represented by the second set of labels of Fig. 13. This graph 
is neither backward- nor forward-deterministic, and has certain 
pairs of states with identical futures and other pairs of states 
with identical pasts. Hence, the graph may be reduced either 
by merging states with identical futures or with identical pasts. 
The former yields the backward-deterministic graph shown 
in Fig. 14(a) while the latter procedure yields the forward- 
deterministic graph in Fig. 14(b). These are nonisomorphic 
as labeled graphs, and it follows that the orbit system does 
not have a bideterministic minimal presentation. Since it may 
be easily verified that the code is an SIT, it follows that it 
is not a DPDF system. This may also be checked directly 
by noting that the images of the left-semi-infinite sequences 
. . . I, I, I and . . . RM, RM, RM share the image of the right- 
semi-infinite sequence I, I, I,. . . in their futures, but not the 
image of the right-semi-infinite sequence R3, R3, R3 . . . . It 
may, however, be seen the the above orbit system is conjugate 
to the full 4-shift, so that it is still CFS. q 

E. Characterization of Orbit Systems 

In the remainder of this section, we will establish the 
fact that orbit systems are always conjugate to full shifts, 

thereby providing a complete solution to the problem of their 
classification. We will first prove that all orbit systems are 
SFT’s by showing that every group code is topologically 
conjugate to the set of bi-infinite edge sequences of a labeled 
graph generating it. We will then use a modification of the 
technique used in the proof of Fact 28 to establish a topological 
conjugacy between this set of bi-infinite edge sequences and 
a fullshift, there by demonstrating that every orbit system is 
CFS. 

Let G  be a finite group acting on a set X and let 7(x0) be 
an orbit system. By passing over to a higher block system if 
necessary, we may assume that the symbolic dynamic group 
7 < G’ is a one-block SFT. Let (G, 1) be the minimal labeled 
graph generating the subshift S. Let S and E be the state group 
and the edge set of the directed graph 6, and let l(e) E G  
denote the label of the edge e, for each e E E. Since the 
group system is a one-block SFT, it follows that all the edge 
labels are distinct. The orbit system 7(x0) is generated by the 
same graph 4 with the new edge labeling l,, given by 

l,(e) = I(e).xo E X 

for all e E E. The resulting labeled graph (4,1,) may not be 
the minimal presentation of the orbit system I(Q), but it has 
the following useful property: 
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Fig. 11. The minimal BP of the orbit system of Fig. 10. 

Fact 31: The futures and pasts of any two states of (C?, Zz) 
are either identical or disjoint. 

See [16]. q 
It is possible, however, for two states to have identical 

futures but disjoint pasts, or the converse. In fact, this is the 
key difference between group systems and orbit systems. 

Let (8,, Zr) be the graph obtained from (8, Zz) by merging 
all states with identical pasts. The resulting graph’still gener- 
ates the orbit system I(Q) and turns out to be very useful in 
providing insight into its structure. Its utility as a presentation 
of the orbit system 7(x0) is further enhanced by the following 
observation: 

Lemma 32: The labeled graph (&, Zr) is deterministic. 
Proof of Lemma 32: Suppose the graph G,. has two edges 

labeled a E X, with the same initial state s and distinct final 
states .a1 and ss. Then, the states si and ss share at least 
one common past. But this is a contradiction, because the 
construction of (BT, Zr) from the graph (CI;, Z,), together with 
Fact 31 ensures that the pasts of ,any two states of & are 
mutually disjoint. q 

Next, we will show that the orbit system I(Q) is conjugate 
to the set of bi-infinite edge sequences corresponding to paths 
on the graph G,, there by establishing the following theorem. 

Theorem 33: Every orbit system is an SFT. 
Proof of Theorem 33: It is sufficient to show that the l- 

block map induced by graph labeling from the edge sequences 
generated by bi-infinite paths on G, to the bi-infinite sequences 
in the orbit system is l-l. In view of the fact that G, is 
deterministic, it is enough to show that every sequence in the 
orbit system corresponds to a unique bi-infinite state sequence 

on the graph G,. Now suppose that two paths with distinct 
state sequences +~=s-~s-~sos~s~~~~ and ...t-2te1totlt2’.. 
generate the same bi-infinite sequence x E T(Q). Without 
loss of generality, we may assume SO # to. Then we have two 
distinct states SO and to of the graph G, sharing a common 
past XII;, which leads to the same contradiction as bef0re.U 

Let (p be the labeled graph homomorphism from the graph 
(6,Z) generating the group system T, on to the graph (8,) Zr ) 
generating the orbit system. Let D < G  be the stabilizer of 
the point zu E X with respect to the group action under 
consideration. Let Sk C S be the set of terminal states of 
left semi-infinite paths whose edge labels are all drawn from 
the stabilizer group D. It is easy to see that Sh is a subgroup of 
the state group S, and that two states of the graph (8, Zz) have 
the same past iff they lie in the same Zefi coset of the subgroup 
S&. Thus the states of the reduced graph C& may be identified 
with the left cosets of Sh, and the graph homomorphism 4 
maps each state s of the graph B to the left coset .s$,. Define 
H to be the set of labels of all edges in the labeled graph (8,Z) 
whose initial and final states are in the the subgroup Sk. H is a 
subgroup of the group alphabet G, which we call the parallel 
transition group of the orbit system, and contains a furtber 
subgroup H n D, which we refer to as the identity subgroup. 
Two edges of the graph (S, Z) get mapped to the same edge of 
(9,, Zr ) under the graph homomorphism $ iff their edge labels 
lie in the same left coset of the identity subgroup H rl D. 
Two edges of the graph (8, I) get mapped to distinct parallel 
edges on the graph (&., Zr) iff they lie in the same left coset of 
the parallel transition subgroup H, but in different left cosets 
of the identity subgroup H II D. This sheds some light on 
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Fig. 12. The group system generated by the cycle [R’T, RS, STM]. 

the structure of the deterministic graph (G,, &.) generating the 
trellis orbit system. 

We now come to the most interesting fact about orbit 
systems. 

Theorem 34: Every irreducible orbit system is topologically 
conjugate to a fullshift. 

Proof of Theorem 34: From the preceding facts about the 
structure of the deterministic graph (&., lr) generating the orbit 
system I(Q), it follows that whenever there exists an edge 
from one state to another, there exist exactly IHI /JH n DI E 
N parallel edges between the given pair of states. This shows 
that the orbit system is conjugate to the product of a full 
N-shift and the set of all state sequences corresponding to 
bi-infinite paths on the graph (&, &.). Let us denote this latter 
subshift by C’. We will show that C’ is actually an orbit 
system. 

Denote by 7’ the set of all state sequences of the graph 
(G, I) corresponding to bi-infinite paths on the graph G. 7’ is a 
group system over the (group) alphabet S. Consider the group 
action of S on the set Y of all the left cosets of 5’; induced 
by left translation, i.e., the group element s E S acting on the 
left coset t$, E Y yields the left coset (st)$, E Y. Let the 
subgroup Sh E Y be chosen as the seed yc. It is clear that the 
subshift C’ may be identified with the orbit system I’(yc). 
We have thus shown that the given orbit system is conjugate 
to a product of a fullshift and another orbit system. Unless the 

group system 7 has a trivial input group, the group system 
7’ associated with the latter group code has a strictly smaller 
alphabet. Hence, we may continue the procedure repeatedly, 
until it is found that the given orbit system is conjugate to 
a product of several fullshifts and an orbit system C whose 
underlying group system 7 has a trivial input group. But by 
irreducibility, it follows that the 7 and C are full l-shifts, so 
that the given orbit system is conjugate to a fullshift. It is a 
simple matter to see that the size of the fullshift to which the 
orbit system is conjugate is given by IFllSAl/lH n DI, where 
F is the input group of the underlying group system 7. Cl 

We summarize our observations in the Venn diagram of 
Fig. 16; the numbers correspond to the figures in this section. 
Note that Fig. 15 represents an SFT that is CFS and DPDF 
but which is not an orbit system. (The latter follows from the 
nonuniformity of the in- and out-degrees of the graph). This 
example is included for completeness. 

V. TRELLIS GROUP CODES FORTHE GAUSSIAN CHANNEL 

A trellis group code for the Gaussian channel is obtained 
when all the ingredients that we have described thus far are 
brought together. A typical list of constituents consists of 

1) a block isometry group code C c R”, 
2) a geometricaZly uniform partition [C; Ci] of the group 

code C, 
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R21 (0.2) 

Fig. 13. The group system generated by the cycle [S, RS, T]. 

3) an isometric labeling 1 : a3 -+ C with label isometry 
group 61, 

4) a symbolic dynamic group A < 8: over the label group 
61, and 

5) an orbit system A(Q) c ,Cc’ for a seed 20 E L” (a 
constant sequence). 

The codeword sequences x E C* are then identified by the 
necessary and sufficient condition that the label sequence 
derived from 3: belohg to the orbit system Z(x) E h(za). 

In terms of a directed graph (or trellis) description for the 
code, a minimal graph for the orbit system can be used to 
describe the set of codewords. For each edge of the orbit 
graph, substitute the label from L with the cell of the partition 
corresponding to the inverse image under the label map 1. 
Notice that it can be assumed that the parallel transition 
subgroup of the group system is trivial (i.e., each pair of states 
(SO, ~1) is connected by at most one directed edge from se to 
~1). This follows from the fact that if this were not the case, a 
coarser partition of the group code C, obtained by the union of 
the cells associated with the self-loops of the identity state (and 
the corresponding cosets), would be sufficient to describe the 
code. 

Of course, this class of trellis group code is quite broad and 
covers a majority of trellis and convolutional codes used in 
practice. In general, three distinct subclasses exist based on 
the size of the cells of the partition ICi I. If the partition is 

trivial, in the sense that the subcodes consist of only a single 
point (Ci] = 1, then the distinction between ingredient 1) and 
2) is blurred and there is a one-to-one correspondence between 
the codewords of the code and the orbit system. In terms of the 
trellis description, every edge of the graph would be labeled 
by a single point of the group code C. An example of such 
a system would be QPSK modulation with the standard 7; 
labeling and a rate l/2 binary convolutional code. 

If, on the other hand, the partition is nontrivial yet the cells 
are finite in cardinality, 1 < JC;I < oc, then the trellis group 
code has many (in fact, an infinite number) of codewords 
for each element of the orbit system. This means, from the 
encoding point of view, that to encode to a codeword x, 
some data will be associated with the selection of the orbit 
system sequence, 1(x) E h(~a), and the balance of the data 
is associated with the resolution of the specific point x in 
the inverse image of the label map 1-l(Z(x)) c C”. The 
rate of the encoding is then the sum of the capacity of the 
orbit system plus the logarithm of the size of the cells of the 
partition, log, (I&]) (bits). In the language of Ungerboeck [7], 
[8], the encoding maps the “coded bits” to the orbit system, 
at its capacity, and maps the “uncoded bits” to the specific 
points in specified cells of the partition. These uncoded bits 
can be considered the “parallel edge information” since this 
information is used to resolve the exact path through the trellis 
once the coded bits determine the state path. An example of 
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(a) 
Fig. 14. The backward and forward deterministic minimal graphs of Fig. 

Fig. 15. Example of an SFI that is CFS and DPDF, but not an orbit system. 

such a system would be 8-PSK modulation with the standard 
four-way, antipodal partition with a Zi labeling of the cells 
and a rate l/2 binary convolutional code. 

Finally, when the cells of the partition are infinite in size 
(e.g., the integer lattice), then the trellis group code has infinite 
capacity (and infinite power, etc.) and a bounding region Iw is 
used to define a usable subcode. The bounding region W is 
defined so that the cardinality of its intersection with each cell 
is a constant. In that way, log, (IR n Ci I) bits are used as 
the parallel edge information. In this case, the range of the 
encoder is not a group code itself, yet inherits many desirable 
properties of the infinite capacity trellis group code in which 
it lies. For example, the minimum distance of the code can be 
lower-bounded by the group code; this is the case, for instance, 
in trellis-coded QAM modulation. For example, in the v.32bis 
modem standard, the orbit system is an 8-state system with a 
capacity of 2 bits and the bounding region is varied so that 
log, (I Iw n Ci I) varies from 0 to 4 bits (the rate varies from 
(0 + 2) * 2400 = 4800 to (4 + 2) * 2400 = 14 400 bits/s). 

There are two main issues associated with these classes of 
codes, the synthesis problem and the analysis problem. In the 
synthesis problem, one is asked to find attractive codes for 
a particular application. In this case, the code designer must 

(b) 
13. 

decide on the five ingredients in order to find an “optimal” 
tradeoff of parameters, e.g., rate, average and peak power, 
minimum distance, complexity, etc. Often the system design 
must satisfy certain coding requirements, such as a rotational 
invariance constraint, that requires the code be closed under 
a rotation (e.g., for R2, require that every codeword, when 
rotated by 90” component-wise, be a codeword). Such a 
constraint on a trellis group code is a requirement that the “all- 
rotation” sequence be a member of the symmetries of the trellis 
group code. In other words, the code must be realizable as the 
orbit system of a symbolic dynamic group which includes the 
all-rotation sequence . . . R, R, R, . . . . 

In the analysis problem, a code is presented to the analyst, 
in terms of a finite-state machine or similar description, who 
must try and determine if the code is a trellis group code, and 
if it is, determine the symmetries of the code. In this case, one 
must try and determine if there exists a group system A that 
can be used to generate the code. This problem is like solving 
a puzzle that may or may not have missing pieces. 

A. Trellis Group Codes over PSK Signal Sets 

In this section, we use the earlier results on group systems 
over cyclic and dihedral groups in order to characterize trellis 
group codes over two-dimensional m-PSK signal sets. We will 
see that any such nontrivial trellis group code must use a four- 
way partition of the signal set. As a consequence, it follows 
that there are no nontrivial trellis group codes over the two- 
dimensional m-PSK signal set that are strongly rotationally 
invariant, i.e., invariant with respect to rotation by an angle 
360’lm. 

This result implies, for instance, that there are no 90”, 
rotationally invariant trellis group codes over two-dimensional 
QPSK. Similarly, there are no 45’, rotationally invariant trellis 
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Pig. 16. The relationship between sofic systems; SFT-shift of finite type; BMP-bideterministic minimal presentation; CFS-conjugate to a full shift; 
DPDF-disjoint past/disjoint future; TGC-trellis group code (orbit system); SDG-symbolic dynamic group. 

I, R4/ (0.4) 

w R:R6/(2,6) 

(a) (b) 
Fig. 17. An example of a 90’ RI trellis code over 8-PSK. 

group codes over two-dimensional S-PSK. This, however, does 
not preclude the existence of codes that satisfy weaker forms of 
rotational invariance, i.e., invariance with respect to rotations 
by multiples of 36O”/m. The following example from [42] 
shows a 90°, rotationally invariant trellis group code over two- 
dimensional S-PSK. It also follows from our results above 
that any trellis group code over 8-PSK must be associated 
with anontrivial four-way partition of the signal set. Since the 
optimal four-way partition of 8-PSK puts antipodal points in 
the same cell, it follows that any nontrivial trellis group code 
over 8-PSK is 180’ rotationally invariant. An example of such 
a code is shown in Fig. 17. 

We shall now examine the possibility of strong rotational 
invariance for such codes. If D, = (R,, S) denotes the 
dihedral group corresponding to the symmetries of m-PSK, 
then strong rotational invariance implies the existence of a 
constant sequence . . ’ R, . ’ . in some group system generating 
the given trellis code. From the proof of Theorem 29, it 
then follows that the parallel transition subgroup contains the 
cyclic group (R&). But this induces a two-way partition of 
the signal set, which rules out any nontrivial codes. Hence, 
we conclude that there are no nontrivial, strongly rotationally 
invariant trellis group codes over m-PSK constellations in two 
dimensions. 

We shall now justify the assertions we made at the beginning 
of this section. Recall that any irreducible group system G 
over a dihedral group may be decomposed into a parallel 
transition shift P”, and a quotient shift component ‘FI, which is 
an irreducible group shift over izz @  Zs. We shall assume that 
X is a nontrivial group system over 2s $ 22 ; otherwise, the 
group system 6 is a fullshift. We now examine the structure 
of the orbit system corresponding to the system G acting on a 
point 20 E X in the (PSK) signal set. The parallel transition 
shift P” induces a uniform partition [W; P(Q)] of the signal 
set, and the quotient shift may be thought of as acting on ~. 

It follows that in order to realize strong rotational invari- 
ance with phase-shift keying, we need to consider higher 
dimensional m-PSK constellations. We shall now construct 
a strongly rotationally invariant trellis group code over a four- 
dimensional QPSK signal set. The signal set consists of 16 
points obtained by taking the Cartesian product of two QPSK 
signal sets, each of whose points are labeled as shown in 
Fig. 18(a). We denote the symmetries of the IBpoint set by 
ordered pairs of the form (RiSj, R”S’), with 0 5 i, k 5 3 
and 0 5 j, 1 5 1, where R represents rotation by 90” while S 
denotes reflection. about the 45’ line on the Euclidean plane. 
We also use I to denote the identity map (R’S’) of the 
Euclidean plane. 

We begin with the subgroup of symmetries of the con- 
stellation generated by the elements (R, A), (R’, I), (S, S), 
i.e. 

the cell I of the partition. The quotient group shift is 

over an abelian group Za @  Z’s, and the orbit system of an 
abelian group system is itself isomorphic to a group system 
(since the stabilizer of the group action is normal). Hence, if 
the stabilizer is trivial, then the orbit system is isomorphic to 
the group system 8. This corresponds to a trellis code over a 
four-way partition 8-PSK. If the stabilizer is nontrivial, then 
the orbit system is isomorphic to an irreducible group system 
over Za, which is necessarily a fullshift. Thus any nontrivial 
code corresponds to a four-way partition of the signal set. 

G  = ((4 R), (R2J), (S, S)). 



ROSSIN et al.: TRELLIS GROUP CODES FOR THE GAUSSIAN CHANNEL 1241 

RN (R3,R? (b) (b) 

Fig. 18. A QPSK constellation and a four-dimensional group system. Fig. 19. A 90” rotationally invariant code over four-dimensional QPSK. 

Note that G  is a nonabelian group of 16 elements. Consider 
the group system S over G, generated by the cycle 

[(R2A (R2S, S), (RS, WI. 

This leads to a graph with 4 states and 2 parallel transitions, 
depicted in Fig. 18(b). The graph has a self-loop labeled 
(R, R) on one of its states, which implies that any orbit 
system generated by S is strongly rotationally invariant. We 
apply the group system to the seed (20, ~a), generating an 
orbit system and hence a strongly rotationally invariant trellis 
group code over four-dimensional QPSK. This code is shown 
in Fig. 19(a). It is seen that this trellis code has a free distance 
of 8, which is the maximum possible for any 4-state trellis code 
over four-dimensional QPSK at the given rate (2 bits/symbol). 

There is an alternative way of visualizing this code, in 
terms of uniform partitions. As mentioned earlier, the parallel 
transitions in the group system define a group code partition 
of the signal set, and the quotient group shift acts on the cells 
of this partition. In this example, the parallel transitions define 
a GU partition of the 16-point set into eight cells with two 
points in each cell; some examples of cells of this partition 
are given by 

co = {(~0,20)> (~2,~2)) 

a31 = {(51,x3), (x3,51)) 

c2 = ((51, Xl), (x3, x3)) 

c3 = {(X0> x2), (52,x0)) 

etc. The squared Euclidean distance between points in the 
same cell (intracell distance) is 8, while the minimum squared 
distance between two distinct cells (intercell distance) is 2. 

The quotient group shift corresponding to the group system 
in Fig. 18(b) is a group system over the abelian group Z2 @Zs. 
As noted earlier, the orbit system of an abelian group system 
is itself isomorphic to a group system. In this example, the 
group acting on the cells Ci of the partition has a nontrivial 
stabilizer (in fact, a stabilizer isomorphic to Z,), so that the 
orbit system is isomorphic to a group system over the alphabet 
22 $ Zs. This is equivalent to the convolutional code shown in 
Fig. 19(b), with generator matrix G[D] = [1+ D + D2, 1+ D], 
where the ordered binary pairs are associated with the cells of 
the partition in the following manner: 

Thus the code uses only four of the eight cells in the partition. 
Since the minimum distance between any two of these four 
cells is 4, we find that the 4-state code achieves a free 
distance of 12. Hence, the overall distance of the trellis,code 
is governed by the intracell distance of 8. 

Further examples of rotationally invariant trellis group codes 
over multidimensional m-PSK constellations may be found in 
~421. 

B. Application: Rotationally Invariant Trellis 
Group Codes for QAM 

Rotationally invariant (RI) trellis codes are important 
wheneverthe modulation signal set has a rotational symmetry 
and the transmission system can introduce a phase rotation 
[38]-[41]. Rotational invariance means that a trellis code is 
closed under rotation of the individual elements of the signal 
set for which it labels. As mentioned previously, for a GU 
trellis code to be RI within the framework of this paper, it is 
now clear that a necessary and sufficient conditionis that the 
orbit system is generated from a group system which includes 
the “all-rotations” sequence. These ideas are illustrated in the 
next subsections for two-dimwnsional QAM. 

1) Group Codes over Upper Triangular, AfJine Maps on 
ZT: In this section, we consider group codes over the set ZT 
obtained via a group of upper triangular, affine transformations 
of the form 

g(z) = AZ + b, z E z; 

where A is an invertible upper triangular matrix ( i.e., l’s 
on the diagonal) and b E ZF. The group has 2(“2-“)/2+” 
elements (2(“2-“)/2 ho’ c ices for A and 2” choices for b). The 
group codes of interest are conjugate to the full 2” shift ( i.e., 
(Z$)“) where Ic < n. We discuss the I; = 2, n = 3 case in 
detail, which has direct applications to the problem of finding 
interesting rotationally invariant codes in two dimensions, and 
indicate the framework for general Ic and n. 

Consider an isometric labeling on the label set Zz with label 
isometry group 

000 co; 01 t-f 61 100 C2 11 H Cs. 671 = {g 1 g(z) = AZ + b} 
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where 

This nonabelian group has JBlJ = 64 elements; the elements 
of the group compose as g’(g(z)) = AZ + b, where 

( 1 al,+a2 a’,+al+a$xo 
A=0 1 ah + a0 

0 0 1 
and 

b’,+bz+aLbl+aibO 
b= bi + bl + abbe . 

bb + bo 

We are interested in describing group codes over the label 
set Zz which encodes Ic = 2 bits, Zi. Let the (z, y) E (Zz)’ 
be the input sequences and let 0 be the shift map. The group 
system is defined by sliding window maps that generate 

(~2, ~1, ao, 62, bl, bo) E (Z;)‘. 

The maps are shift-invariant 

a2(+), 4~)) = da2(3;, Y)) 

a1 (dz>, dd) = da1 (x7 Y>> 

bo(+), 4~)) = Gob, y)) 

and are fixed Boolean functions of a finite number of variables 
drawn from the x and y. 

In order to obtain a group code, a seed constant zc E Z$ is 
selected and the image of the group system acting on zc 

c3(5,y) = b&y) + ~2 + aa(x,y)a + ~I(x,Y)~o 

c2(2, Y) = bl(x,Y) + zl+ UO(X,Y)~O 

co (2, Y> = bo (x, Y) + 20 

is the group code. In the important special case where z = 0, 
the code is simply the triple (ba, bl, bo) (this is the case 
considered subsequently). The group codes of interest in these 
cases are obtained when the maps from (x, y) to (ca, cl, CO) 
are one-to-one. 

The maps from (2, y) to (a2, al, ua, b2, bl, bo) describe a 
group system iff the system is closed under composition. 
Closure is obtained when there exists a sliding window map 

f : (z;)” x (z;)” ---f (z;)“, f(x, y,x’, y’) = (x”, y”) 

(where f(dx>, O(Y), 4x’), 4~‘)) = df’(x, Y, x’, Y’>>> that 
ensures that the composition equations 

6’2’ = u’z + a4 b!j’ = bb + 42 + ah bl + ui bo 
u:’ = ai + al + a$0 b:/ = b: + bl + u&b0 
a$ = ub + a0 b; = b; + b. 

hold for all s,y E (Zz)” where ui = az(x,y), etc. We call 
this map the input composition map f. 

2) Rotationally Invariant Trellis Group Codes in Two Di- 
mensions: Consider the isometric labeling for the eight-way 
Ungerboeck partition in two dimensions based on the label set 
Z2 x hq, as shown in Fig. 7. The label (m,p) represents the 
binary “magnitude” m E Za and the four-way “phase” p E 24 
of the “windmill” tile. The 32 affine maps given by 

g((T))=((: ::)(F)+(2) 
where al, bl E Za, bo E 24 and ua E (1, -l}, constitute an 
isometric label group that includes a representative for the 90’ 
rotation of the plane. Rotation corresponds to an increment of 
the phase component of the label p H p + 1 (al = bl = 0, 
a0 = b. = 1). 

The partition permutation group, Ppg, for the eight-way 
partition has 64 elements. The entire group is obtained by 
replacing the windmill labeling with the binary labeling z = 
(m, pl,po) E Zi where p = 2 * p1 + pa (i.e., pl is the most 
significant bit (MSB) and po the least significant bit (LSB) 
of the four-way phase p). Then the isometry label group 61 
represents the entire group Ppg and takes the form of the 
affine maps on Zs as previously discussed. Note that rotation 
in this label represents the condition ua = al = b2 = bl = 0, 
a0 = bo = 1; a group code is rotationally invariant if the 
constant sequences satisfying these conditions is an element 
of the group system generating the code. 

3) A Class of Rotationally Invariant Group Codes: Consider 
a rate l/2 convolutional encoder over 24 with polynomial 
generator 

G(D) = b&‘h(DN 
= [D” - Di + 2f,(D), Dj + 2&(D)] 

where the binary polynomials 

f&D> = c D” 
lEL, 

and 

f,(D) = c Dz. 
lEL, 

The windmill label is obtained by setting the binary magnitude 
m to the MSB of the output obtained from the gm(D) 
polynomial and the phase as the output from gr,( D). Note 
that the fact that (gP(D))2 = D2j means that the input can be 
obtained from the phase alone with a sliding window map (i.e., 
the encoder is “noncatastrophic”). Furthermore, a constant 
input sequence produces a constant output sequence, with 
magnitude equal to the the number of terms in the polynomial 
fm (D), IL, 1, modulo 2; for rotational invariance it is required 
that this be 0 (i.e., j&l is even). 

In terms of the binary label, the encoder is expressed by the 
sliding window equations 

ba = o’(x) + oi(x) + &) + c o’(y) + ak(y)oi(y) 
IGL, 

bl = aj(x) + c d(y) 
lEL, 

b. = &j(y). 
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Note that the equations are linear functions of (x, y) with the 
single exception of the quadratic term ak (y)ai (y), in b2. 

To show that the codes are group codes, we need to exhibit 
the maps (aa, al, ua) and the input composition map f. First 
we take u2 = 0, which would imply that the original Za x 24 
label is sufficient to describe the group code using the 32- 
element group with the maps 

(: (-?)Q) (;) + (2blb: bo)’ 

Take as the composition map f a linear form plus an unknown 
factor 

X” =x+x’+S, y” = y + y’ + s, 

and observe that closure 
0 = Abe = b. + b; - bb’ 

= d(y + y’ - y - y’ - 6,) = cP(S,) 

implies 6, = 0. Now 

0 = Abl = bl + e + abbe - by 
= ubbo - aj(S,) = u@(y) - &5,) 

implies 6, = 0-j (ub)y, which is a quadratic term. Finally, 
consider the equation 

0 = Ab2 

= ok(y + a”(y’)d(y’) + a:J(y) 
- CT”&) - oi(Sz) - c7”(y”)ai(y”) 

= a’(y)d(y) + o”(y’)2(y’) + aid(y) - ~“(a-j(ub)y) 

- 2(o-qu;)y) - uk(y + y’)ai(y + y’). 

That is solved when 
aiaj(y) = [gk-j (4 + OYY’)] a”(y) 

+ [g-j (4) + a’(~‘)] ai( 

This suggests two solutions 

a0 = 
{ 

c?-‘“(y), 
o-(y), 

ifj=i 
ifj=Ic 

a1 = Oar-” + a’(y), if j = i 
~~“-~(y) + 2(y), if j = k. 

For example, if we take 

G(D)= [l-D,2+D+2D2] (i=Oandj=k=l) 

then 
u2 = 0 bz = 2: + o(x)+ 4~) + Y~Y) 
al =Y+~~(Y) bl = O(Z) + y + 02(y) 
a0 = a2(y) bo = 4~) 

and we obtain the v.32 code of Fig. 12. When we take 

G(D)=[l-D,2-D] 
=[I-D,D+2(1+D)] (i=Oandj=Ic=l) 

then 
u2 = 0 
a1 = Y + 02(Y) 
a0 = a2(y) 

bz = x + 4x)+ 4~) + Y~Y) 
h = 4x)+ Y + 4~) 
bo = 4~) 

TABLE II 
ROTATIONALLY INVARIANT TWO-DIMENSIONAL CODES ROTATIONALLY INVARIANT TWO-DIMENSIONAL CODES 

and we obtain the code of Fig. 12. Note that these codes only 
differ in the bl term; in the former case, both the group code 
and group system requires three state (i.e., r(x), a(y), r2(y)) 
while in the latter, the group code requires only two states 
(i.e., a2(y) is not required to compute (bz, bl, bo); ;rs shown 
in Fig. 11. 

Table II describes examples of the best codes of this class. 

VI. CONCLUSION AND OPEN QUESTIONS 

In this paper we have presented a unified view of geometri- 
cally uniform trellis codes as an extension of Slepian’s group 
codes. Trellis group codes, and in fact any code described 
as the orbit of some group in sequence space, are naturally 
described using the language and techniques of symbolic 
dynamics. 

The theory of trellis group codes furnishes several in- 
teresting analysis- and synthesis-related problems. Problems 
of an analytic nature involve finding efficient algorithms to 
determine whether a given trellis code is an orbit system or not. 
Some of the results in this paper on the symbolic dynamical 
characterization of trellis group codes (i.e., orbit systems) may 
be strengthened further, thereby leading to an inductive proce- 
dure that performs the desired computation. More generally, 
we would like algorithms for the construction of the symbolic 
dynamic group that represents all the symmetries of a given 
trellis code. This is of particular interest in the design of 
rotationally invariant codes that may or may not be trellis 
group codes. 

There are still many open questions relating to the design 
of trellis group codes for the Gaussian channel, particularly 
relating to their distance properties. A partial answer to this 
problem involves enumeration of group systems up to the 
desired complexity by means of the cycles that generate them. 
One of the drawbacks of this approach is that the minimal 
graph of the group system may be much larger than that of 
an orbit system it generates. This leads to the question of 
whether trellis group codes with the best distance properties 
(for a given number of encoder states) can come from group 
systems that “collapse,” i.e., does the presence of stabilizers 
in the generators of a group system “cost” distance. 

APPENDIX 

A. Semi-Direct Products 

A group C = 13 >a A is a semidirect product if 
i) B is a normal subgroup of C (B a C). 
ii) A is a subgroup of C (d < C). 
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iii) Every element c E C is can be uniquely written c = a*b, 
b E B, a E A (i.e., B n A = {I}, A * 23 = C). 

In this case, if cl, es E C, then cl = al * bl, cg = u2 * bz 
(where * is the group operation), and 

c3 = cl * c2 = al * bl * a2 * b2 
= (a1 * 4 * (a,’ * bl * a2 * b2) = a3 * b3 

where as = al * a2 E A and b3 = a;’ * bl * a2 * b2 E B 
(since t3 is Normal). Note that if it is-always the case that 
a;i .* bl * a2 = bl (e.g., as is always the case in an Abelian 
group) then C = l3 x A is a direct product. 

For example, if 

C = if I f(x) = (Ax) + bl 

is a group of affine transformations, then the translation 
subgroup 

B = {f ( f(x) = x + b} 

is normal in C, the linear subgroup 

A = if I f(x) = AxI 

has only the identity map in common with B, and the group 
C = f3 >a A since 

f2(fi(x)) = (&(AIx + 61)) + b2 

= (AzAIz) + (A2b1 + ~52) 

= (A3x) + b3. 

B. Proofs 

Proof of Proposition 24: In view of Fact 22, we may 
suppose without loss of generality that the bideterministic 
presentation is irreducible. Let 6 be any such presentation of 
an irreducible sofic system S, and let Ea be tbe labeled graph 
obtained by merging all states of 6 with identical futures. 
Then from Fact 23, &, is the right Fischer cover of S and is 
the image of g under a label preserving graph homomorphism 
4. Suppose that 60 is not bideterministic (or else we are done) 
and that a state s of 40 has two incoming edges e and f with 
the same label a. Since 60 is irreducible, there are paths p and 
q originating from state s such that the terminal states of p 
and q coincide with the initial states of e and f, respectively. 
Let +-l(s) be the subset of states of the graph D which get 
mapped to the state s under the graph homomorphism, and let 
n be its cardinality. Since all the states in 4-i(s) have the 
same future, each one of them has pre-images of the paths p 
and q originating at them. From the minimality of B0 and 
bideterministic nature of 6, it- follows that all these paths 
terminate at distinct states of the graph g. This means that 
there are at least 2n distinct edges in B with the same label a, 
each of which terminates in one of the n states in 4-i (s). This 
contradicts the assumption that 4 is bideterministic, thereby 
establishing the desired result. 0 

Proof of Proposition 2.5: (+-) Let 6 be the right Fischer 
cover generating an irreducible sofic system S with the DPDF 
property. Since the future of every state of g coincides with the 
future of some left semi-infinite sequence of the DPDF system 
S, and since by minimality, no two states of D have the same 
future, it follows that the states of B have disjoint futures. This 
implies that the graph B is backward-deterministic because, if 
a state has two incoming edges with the same label, then the 
initial states of the two edges have a common future, which 
contradicts the minimality of 6. This shows that S is a BMP 
system. 

Now suppose that S is not an SFT. Then there are two bi- 
infinite paths on the graph 6 which generate the same label 
sequence. Hence we may choose two right-semi-infinite paths 
with distinct starting states s and t, producing the same right- 
semi-infinite label sequence Z. Then, the right-semi-infinite 
sequence z lies in the future of the states s as well as t. But 
this is impossible unless s = t because the states of B disjoint 
futures. Thus contradiction leads to the conclusion that S is 
an SFT. 

(+) Let 6 be the bideterministic Fischer cover of the sofic 
system S. In view of the fact that the futures of the states of 
6 correspond to futures of left-semi-infinite sequences of S, 
it suffices to show that the states of D have disjoint futures. 
Suppose there are right-semi-infinite paths originating from 
two distinct states of the graph generating the same label 
sequence. Since the graph is backward-deterministic, the two 
paths never pass through the same state at the same time. But 
this means that there are two distinct cycles on 4 generating 
the same string, which is impossible since S is an SFT. q 

Proof of Theorem 29: Let S be an irreducible group system 
over the alphabet G  = Z,. Then S is generated by the set of 
all its cycles. 

Suppose that the assertion of the theorem is true for all 
cyclic groups Z, with m < n. If n = p is a prime number, 
then we have S = Zt , since any nontrivial cycle of S may 
be identified with a nonzero polynomial over the prime field 
F,, and any such polynomial may be inverted in the the field 
of formal Laurent series over IF,. 

Now suppose that n is a composite number, and let 1 < k < 
n be any integer that divides n. Define 7 to be the irreducible 
group system obtained by raising every sequence of S to its ,&h 
power. Then 7 is isomorphic to an irreducible group system 
over the cyclic ‘group Z, with m < n, and is hence a full 
shift isomorphic to ZL,, for some integer m’ that divides m. 
We may assume that m’ > 1 because otherwise it follows 
that S is isomorphic to an irreducible group system over the 
smaller alphabet Z z. Now, 7 is a normal subgroup of S, and 
the quotient group Q  e S/7 is isomorphic to an irreducible 
subshift over a cyclic group Z, with n = rm’. Hence, Q  is 
also a fullshift. Finally, the group system S is isomorphict o 
the direct product of the normal subgroup 7 and the quotient 
group &!. The result now follows by induction. 0 

Proof of Theorem 30: Let S be an irreducible group system 
over the dihedral group D, g (R,, S). Let 7 be the group 
system generated by the cycles obtained by squaring each 
cycle in S. Then 7 is an irreducible group system over the 
cyclic group (R,) and hence is isomorphic to a fullshift by 
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Theorem 29. Let 7 be the fullshift over (RL) for some 
positive integer r that divides m. Since the cyclic group 
(RL) is normal in the dihedral group D,, it follows that the 
fullshift 7 is normal in the group system S. The quotient group 
Q  = S/7 is isomorphic to an irreducible group system over 
the dihedral group D, (E D,/( IX&,)). Also, from the definition 
of 7, it follows that every cycle of Q  is of order 2, so that Q  is 
actually a group system over a subgroup G’ < D, consisting 
only of elements of order 2. But any such subgroup of the 
dihedral group D, is isomorphic to 22 or 22 @  Z2. Note that if 
G’ E Z’s, then the original group system S is itself a fullshift 
over an abelian subgroup (Zs or Z’s @  Z2) of the dihedral group. 
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Note that Q  in the proof above is not necessarily the quotient 
group shift S, since the fullshift 7 could be a proper subset 
of the parallel transition shift P’. q 
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