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Practical Coding for QAM Transmission of HDTV

Chris Heegard, Member, IEEE, Scott A. Lery, Member, IEEE, and Woo H. Paik, Member, IEEE

Abstract— This paper describes a practical approach to dig-
ital transmission of compressed HDTV. We demonstrate how
modulation schemes based on QPSK modulation can be directly
incorporated into QAM-based modulation systems. We shall
argue that this leads directly to an easily implementable structure
that is both efficient in bandwidth and data reliability.

The use of a concatenated code is known to provide an effective
and practical approach to achieving low BER, high data rate, and
modest implementation complexity. It is our contention that the
correct solution to the concatenated coding problem for HDTV
transmission is to simply extend the modulation codes developed
for QPSK - to - QAM modulation.

In nonconcatenated situations, a trellis code based on a binary
code at rate 2/3 is usually best; this fact follows from the study
of the asymptotic coding gain of a trellis code. However, this is
not the case for higher error rates at the output of the trellis
decoder (e.g., when a symbol error correcting decoder follows
as in a concatenated code). The reason for this follows from an
analysis of the effect of the number of “nearest neighbors” on
the error rate.

A four-way partition of QAM is a natural extension of QPSK
modulation; it is a simple matter to incorporate any good QPSK
code into a trellis coding scheme for QAM modulation. We
propose a concatenated coding scheme based on QPSK trellis
codes and symbol error correcting coding. A specific example is
presented which shows the advantages of this approach.

I. INTRODUCTION

IVHIS paper describes a practical approach to the digital

transmission of compressed high definition television

(HDTV). The transmission system for this application has the
following requirements.

« Data rate: 15-30 Mb/s

« Bandwidth occupancy: 6 MHz

« Data reliability: one error event per minute

« Receiver complexity: low cost in volume production

The data rate requirement arises from the need to provide
a high-quality compressed television picture. The bandwidth
constraint is a consequence of the U.S. Federal Communi-
cations Commission (FCC) requirement that HDTV signals
occupy existing television channels; they must coexist with
the current broadcast National Television System Committee
(NTSC) signals. This combination of data rate and bandwidth
occupancy requires a modulation system that has high band-
width efficiency; the number of transmitted bits per second
per unit of bandwidth (i.e., the ratio of data rate to bandwidth)
must be on the order of 3 to 5. This means that modulation
systems such as quadrature phase shift keying (QPSK), a
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common scheme for satellite transmission systems (which are
usually “power limited”), is unsuitable because its bandwidth
efficiency without coding is 2. A more bandwidth-efficient
modulation (for “bandlimited” transmission-like terrestrial and
cable video systems), most notably quadrature amplitude mod-
ulation (QAM), is required.

On the other hand, since QPSK systems are so well estab-
lished, coded modulation schemes for such systems are well
understood and routinely implemented. Typically, a binary
convolutional code at rate 1/2 (or the same code “punctured” to
some higher rate [11], [12]) is incorporated as the modulation
code. As a consequence, integrated circuits that realize trellis-
coded QPSK modulation are readily available and easily
obtained. In this paper, we demonstrate how modulation
schemes based on QPSK modulation can be directly incor-
porated in QAM-based modulation systems. We shall argue
that this leads directly to an implementable structure that is
both efficient in bandwidth and data reliability.

The need for very high data reliability follows from the
fact that highly compressed source material (i.e., compressed
video) is intolerant of channel errors; the natural redundancy
of the signal has been removed in order to obtain a concise
description of the intrinsic value of the source data.

Low error rate requirements are met in practice via the use
of a concatenated coding approach (divide and conquer), as
depicted in Fig. 1. In such a coding framework, two codes
are employed: an “inner” modulation code and an “outer”
symbol error-correcting code. The inner code is usually a
“coded modulation” that can be effectively decoded using “soft
decisions” (i.e., finely quantized channel data). The inner code
“cleans up” the channel and exploits the soft decision nature
of the received signal. The output of the inner code delivers
a small (but unacceptably high) symbol error rate to the outer
decoder. This second decoder then removes the vast majority
of symbol errors that have eluded the inner decoder in such a
way that the final output error rate is extremely small.

The standard concatenated coding approach is to use a
convolutional or trellis code [1], [2], [4], [7]-[9] as the inner
code with some form of the Viterbi algorithm [3] as the trellis
decoder. The outer code is most often a “t error correcting”
Reed—Solomon code 2], [4] over a finite field with 29 symbols
(¢ is usually on the order of 5-10). Such Reed-Solomon
coding systems, that operate in the required data rate range, are
widely available and have been implemented in the integrated
circuits of several vendors.

The optimization of the modulation code for concatenated
and nonconcatenated coding systems can lead to different
solutions. In a concatenated coding system, one needs to
consider the required error rate of the modulation (inner)
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Fig. 1. QAM transmission system using concatenated coding.

code to achieve a specified bit or block (codeword) er-
ror rate from the outer code. In a nonconcatenated coding
system, the required error rate of the modulation code is
usually much lower than in a concatenated coding system.
For example, modulation code A may perform better at“low”
signal-to-noise ratio (SNR) where the error rate is “large”
than modulation code B, which performs better at “high”
SNR where the error rate is “small.” Code A may be the
better choice for a concatenated coding system, and code
B may be the better choice for a nonconcatenated coding
system.

In light of this, it is our contention that simple extensions
of modulation codes developed for QPSK-to-QAM modula-
tion provide the correct solution to the concatenated cod-
ing problem. This is true even though these extensions are
known to be weaker than other known modulation codes
used in nonconcatenated systems (i.e., when used in the
domain where the output error rate of the modulation code
is “small”).

The organization of this paper is as follows. In Section
I, a brief description of trellis/modulation coding is given.
In Section III, the optimization of coding gain for trellis
codes used in concatenated and nonconcatenated systems
is discussed. In Section IV, QPSK-based trellis codes are
described in detail, along with a trellis decoder implementa-
tion. In Section V, performance comparisons between QPSK-
based trellis codes and Ungerboeck codes are shown with
and without outer coding. A short summary in Section VI
concludes the paper.

II. TRELLIS/ MODULATION CODING

In uncoded QAM transmission, n bits per symbol are
transmitted by mapping n data bits onto the 2%V points of a

QAM constellation. Thus, in the uncoded case, the number
of data bits is equal to the number of input bits of the
QAM modulator N = n. In a trellis code [1], [7]-[9], the
constellation is expanded by one bit (i.e., the constellation
size is doubled), and the number of data bits per symbol is
one less than the number of input bits of the QAM modulator
N n + 1. This expansion of the signal constellation
is what allows for a coding gain to be achieved (i.e., it
allows for redundancy to be introduced in the transmitted
signal).!

A two-dimensional trellis code for the transmission of n
bits per QAM symbol is obtained by the combination of an
n-bit input, an n + 1 bit output, a 2”-state finite state machine
(FSM) (i.e., encoder), and an N = n + 1 bit QAM mapper
(i.e., a 2V point QAM mapper/modulator), as depicted in Fig.
2. As discovered by Ungerboeck [7], the most economical
approach to this problem involves two components. The signal
constellation is partitioned into 2™ subsets, each of size
2™, in such a way that the distance between points within
each subset is maximized.? The n input bits are split into
k “coded” bits and m = n — k “uncoded” bits. The k-bit
coded data is then encoded by a FSM with k£ + 1 output bits
(i.e., redundancy in time is introduced) and used to select the
subset, while the m-bit uncoded data is used to select the point
within the subset selected by the FSM. One way of labeling
the QAM constellation points, corresponding to a mapping of
the n + 1 bits to a QAM constellation point, is described in
[(71-9].

'In the “pragmatic” approach described in [10], QAM modulation is
obtained from the one-dimensional PAM model. This approach leads to
a quadrupling of the QAM signal constellation N = n + 2. In many
applications, this extra expansion is undesirable.

2Caulderbank and Sloane [1] have shown that Ungerboeck’s method of set
partitioning is best described in terms of lattices and their cosets.
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Fig. 2. Trellis encoder.

III. CODING GAIN

A. Asymptotic Coding Gain

In nonconcatenated situations, a trellis code based on a
binary code at rate 2/3 (not a punctured rate 1/2 code) is
usually the best solution.® This fact follows from the study
of the asymptotic coding gain (ACG) of a trellis code.

The ACG, v, of a QAM-based trellis code is given by [8]

_ d} oo (coded)/ Ec(coded)

A2/Ec(uncoded)

6y

where Ec(coded) and Ec(uncoded) denote the average con-
stellation energies of the coded and uncoded schemes, re-
spectively, and A, is the minimum spacing of the QAM
constellation points. The free Euclidean distance of the trellis
code is given by [8]

d? o(coded) = AZ min {d}  [FSM(k,v)],2**'} ()

where the Euclidean distance of the FSM (i.e., the convolu-
tional encoder) is df . [FSM(k, v)]. The free distance of the
FSM depends on the structure of the encoder.

For a given number of encoder states parameterized by
v and the number of inpiits given by k, the encoders that
maximize the FSM free distance have been tabulated for small
values of v [1], [8]. The results show why £ = 2 (i.e., an
encoder FSM at rate 2/3) is the most practical for maximizing
the ACG. For a given value of k and small v, the ACG is
determined by the FSM

_ Ec(uncoded)

N 2
7= Ec(coded) dfree[FSM(K, V)] 3)

However, because the ACG involves a minimum as the
complexity of the encoder (as measured by v) is allowed to
grow, it becomes

_ Ec(uncoded) .1

T=7E c(coded) @

Thus, for a given value of k, there is a natural value of
trellis complexity v*(k) such that the ACG is not improved
by making v > v*(k). We note that v*(k) is monotonically
increasing in k, since the rate of the encoder k/(k + 1)

3This assumes a two-dimensional trellis code [8].

increases with increasing k. Now from [9] it is seen that, for
QAM trellis coding, »*(1) = 2 and v*(2) = 7. Thus, for a
four-way partition (k = 1, rate 1/2 encoding), the maximum
ACG (equal to 3.01 dB) is achieved with four states while,
for an eight-way partition (k = 2, rate 2/3 encoding), the
maximum ACG (equal to 6.02 dB) is achieved with 128 states.
Note that since the complexity of the decoder (with Viterbi
decoding [2], [4], [7]) depends on the number of states of the
encoder, a 16-way partition (k = 3, rate 3/4 encoding) may
not be practical since the number of states required to achieve
a large ACG might be prohibitive.

B. Optimization of Coding Gain

The conclusion from the above discussion is that if the ACG
is to be maximized, then the obvious practical choice for trellis
coding is an eight-way partition of the QAM constellation with
a rate 2/3 encoder. Furthermore, in nonconcatenated systems,
where the output error rate of the trellis code is to be small,
maximizing the ACG is the appropriate thing to do. However,
this is not the case for higher error rates at the output of the
trellis decoder (e.g., when a symbol error correcting decoder
follows). The reason for this follows from an analysis of the
effect on the error rate of the number of “nearest neighbors.”

The probability of error, Psym, at the output of the trellis
decoder can be predicted by the behavior of the formula [6],
(8]

coded )
Psym = MunQ [51“\/(2_—1\,—)] ®)
or, using (1) and (2),

NalJ
& MpnQAo—F———x= 6
Poym ? [ V4 2Ec(uncoded)] ©

where the @-function is

Q)= o= [ e (42

M,,.,. is the average number of nearest neighbors, N, is the
one-sided spectral density of the additive Gaussian noise, and
p is the signal-to-noise ratio (i.e., the energy per transmitted
symbol divided N,).

For “high” signal-to-noise ratio p, the error probability is
more seriously effected by the ACG, 1, than the number of
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nearest neighbors M,,,,. However, in the domain of “low” p,
this is simply not the case; the number of the nearest neighbors
has a significant effect. Thus, a code with a smaller ACG and
smaller M,,, may be more reliable than a code optimized for
the ACG.

For example, for the rate 2/3 32-QAM Ungerboeck code
with 16 states, the ACG is 4.77 dB [9]. However, the number
of nearest neighbors is estimated to be 56 [9]. On the other
hand, if a strong QPSK-based code modulation code is used
with a four-way partition of 32-QAM, the ACG is only 3.01
dB yet the number of nearest neighbors is 2.5. (The free
distance of this code is determined by the “uncoded” bits.
A four-way partition of 32-QAM yields four subsets, each
with eight points. Among these eight points, five have two
nearest neighbors, two have three nearest neighbors, and one
has four nearest neighbors. So the average number of nearest
neighbors is 2.5.) For low signal-to-noise ratios, the latter code
has a smaller probability of error.

It is this simple realization that leads to the conclusion
that, in fact, a four-way partition with v > v*(1) = 2 is
a very efficient method of trellis coding in a concatenated
coding system. Furthermore, a four-way partition of QAM is a
natural extension of QPSK modulation. It is a simple matter to
incorporate any good QPSK code into a trellis coding scheme
for QAM modulation.

IV. PRACTICAL QPSK-BASED TRELLIS CODE

Two issues showing how a QPSK code is incorporated into
a QAM modulation system are detailed. The first addresses
transmission (encoding): how the “codewords” of the QPSK
code and the “uncoded” bits are assigned to the QAM con-
stellation. The method described has the following desirable
features: 1) it addresses the 90° phase ambiguity of QAM,; and
2) the miost significant digits control the constellation size. The
second issue involves the decoder: how the received signal is
 prepared for decoding by the soft-decision QPSK decoder, and
how the “uncoded” bits are decided.

A. Labeling of QAM Points

For purposes of QAM transmission, the codewords of the
QPSK code and the uncoded bits must be assigned to the
QAM constellation. This is accomplished by labeling the QAM
constellation points by a modulation function MOD (m) € R?,

(mod:){0,1}¥ — R

The method described has the following desirable features:
1) the consequences of the 90° phase ambiguity of QAM is
imposed on the QPSK codewords, while the uncoded bits are
invariant to the ambiguity (i.e., the 90° phase ambiguity can
be dealt with in the same manner as the QPSK system); and 2)
the most significant digits control the constellation size (i..,
a nested scheme for 16/32/64-QAM).

Consider the labeling (modulation function MOD (m))
given in Fig. 3, and depicted in Fig. 4. The outputs of the
QPSK encoder form the least significant bits (LSB’s), m;, my,
of the constellation label; the LSB’s select the column of
the matrix. The most significant bits (MSB’s) determine the

constellation size. With no uncoded bits, QPSK is generated;
with two uncoded bits, 16-QAM is generated; with three
uncoded bits, 32-QAM is generated; and with four uncoded
bits, 64-QAM is generated. Furthermore, the effect of rotating
the QAM constellation by 90° is to rotate the columns of the
matrix

00—-01—11—-10— 00

which leaves the rows invariant. Thus, the label of the uncoded
bits is unaffected by 90° rotations. The handling of the 90°
phase ambiguity at the receiver (decoder) is left solely to
the QPSK encoder. The same method used to resolve the
ambiguity with a QPSK receiver can be incorporated into
the QAM system using this labeling. For example, differential
encoding could be used if the QPSK code is itself rotationally
invariant.

As a final note, the assignment of the two coded bits,
m1,mg, to the four constellation subsets is such that the
intersubset Hamming distance is proportional to the intersubset
Euclidean distance squared (the proportionality factor is A2,
the square of the minimum spacing of the constellation) as is
normally done in coded QPSK systems. (See Fig. 4 for the
coded bit assignment.)

B. Pruning and Decoding

Consider the process of signal detection when a soft decision
QPSK decoder is incorporated into a system employing the
previously described QAM modulator. First, in hard decision
detection of QPSK or QAM signals, the received signal y =
Zr + wi is quantized, where the signal z; belongs to the
QPSK or QAM constellation (i.e., in the range of MOD [m]),
and wy is the noise. The quantization function provides an
estimate of both the signal z} and the data m’ according to
the relation x;, = MOD (m'). For maximum likelihood (ML)
detection, the log-likelihood function — log (p(yx|MOD (m)))
is minimized over the possible messages m € {0,1}%, where
p(yk|zr) is the conditional probability of receiving i given
that z, was transmitted. For random messages, ML detection
minimizes the probability of error. The most common method
of quantization is nearest (Euclidean) neighbor detection,
which satisfies

lls = 24]|* = min flye — MOD (m)]|>

where the minimum is taken over m € {0,1}", and || ® ||? is
the Euclidean distance squared (i.e., the sum of squares). In the
case of additive Gaussian noise, nearest neighbor detection is
ML.

In coded QPSK and QAM systems, soft decision informa-
tion should be provided to the decoder for more effective
decoding of the codeword. This soft decision information is
often described as a symbol metric, which indicates the quality
of deciding a particular symbol was sent when y;, is received.
For nearest neighbor decoding, the metric of choice is

metric (yx; m) = [jyx — MOD (m)||.

(In practice, the metric itself is quantized for purposes of
implementation.) In QPSK, for example, for each possible
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Fig. 3. Modulation function for 16/32/64-QAM.

message m1,mg € {0, 1}, the nearest neighbor metric ||yz —
MOD (m,, mol|?) is the ML metric for additive Gaussian
noise.

In coded QAM modulation based on a soft-decision de-
codable QPSK code, four symbol metrics must be supplied
to the decoder as well as four conditional hard decisions
(“uncoded” bits). For nearest neighbor detection, for each
choice of my,mp € {0,1}>

metric (y; m1, mo)

= min |lyx — MOD (mp_1, -+, mz, my, mo)||?

where the minimum is taken over my_ji,---,m2 €
{0,1}¥-2. The conditional hard decisions correspond to
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the choice of my.1,- -+, my that obtain the minimum. The

process of determining the symbol metrics and conditional
hard decisions is known as pruning. In trellis-coded QAM,
the uncoded bits appear as “parallel” branches of the trellis;
the computation of the symbol metrics and conditional hard
decisions act to prune all but the single best branch from the
set of parallel branches.

Once the pruning operation has been completed, the soft
decision information is presented to the decoder of the QPSK
code. During this time, the conditional hard decisions are
stored (delayed) until QPSK decisions become available. The
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Fig. 5. Trellis decoder for 16/32/64-QAM.
QPSK decoder, using the soft decision information, decodes 16" )

the QPSK information (i.e., m1,mg). The remaining informa-
tion (i.e., my_1,- -+, my) is then decided using the decoded
QPSK information and the previously stored conditional hard
decisions.

Note that if the QPSK decoder is ML (for QPSK modula-
tion), then the pruning/QPSK decoding method is also ML. For
example, if the QPSK code is a binary convolutional code with
nearest neighbor (Viterbi) decoding, then the aforementioned
QAM decoding algorithm is also nearest neighbor (i.e., finds
the closest codeword to the received sequence) [7]-[9].

Fig. 5 shows a decoder implementation for 16/32/64-QAM.
Notice that QPSK-based trellis codes allow a very practical
trellis decoder design. The Viterbi decoder can be the “stan-
dard” off-the-shelf variety instead of a custom part (as would
be the case if, say, a rate 2/3 convolutional code were used).

V. PERFORMANCE RESULTS

Using (1), (2), and (6) with A, = 2 (i.e., constellations
based on the odd integer lattice), the performance of QAM-
based trellis coded modulation (TCM) using two different
convolutional codes is plotted in Fig. 6. The rate 1/2 code is
the “standard” 64-state code with octal generator vector [171
133] found by Odenwalder [5]. The rate 2/3 code is a 16-state
code with octal generator matrix rows [S 1 2] and [2 7
0] found by Ungerboeck [9]. In this paper, the rate 1/2 code is
referred to as the “practical” code, and the rate 2/3 code is re-
ferred to as the “Ungerboeck” code. The Ungerboeck code was
chosen because it requires a Viterbi decoder whose complexity
is about the same as the decoder for the practical code.

For the concatenated system, the error rate of interest is
the Reed-Solomon (RS) code block error rate. The reason the
block error rate was chosen as the error rate of interest, as
opposed to bit error rate, is because it is natural to block code
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Fig. 6. Theoretical TCM performance using two different convolutional
codes.

HDTV lines of data, and when an uncorrectable RS symbol
error occurs in the line, some action is taken regardless of the
number of bit errors that occurred. The block error rate can
be approximated by

L

Phlock ® Y

L i L—i
( i )PRSsym(1 - PRSsym) )
i=t+1

where L is the RS block length (number of m-bit symbols per
block), and ¢ is the number of RS symbol errors that can be
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corrected per block. PRSsym is the probability of an m-bit
RS symbol being in error, and is approximated by

PRssym ~ 1= (1~ P)™" ®)
where P, is the n-bit symbol error rate out of the trellis
decoder. (Note that the above approximations assume that the
channel is memoryless.)

Based on our experience with video compression systems,
a block error rate of 107¢ defines an acceptable viewing
threshold. If blocks are transmitted at the NTSC TV horizontal
line rate of 15.734 kHz, a 10~ block error rate corresponds
to about one block error per minute. If in addition the baud
rate is restricted to 5 MHz (sufficient for transmission over a 6
MHz NTSC channel), then it is required that each of the three
TCM'’s corresponding to three, four, and five RS coded bits per
symbol (16, 32, and 64-QAM, respectively) be concatenated
with RS codes with block lengths of 120, 160, and 200 RS
symbols, respectively. Commercial RS chips that can correct
five, eight-bit symbol errors are readily available. Therefore,
the RS codes (over GF[256]) chosen for concatenation with
the 16, 32, and 64-QAM TCM’s are RS(120, 110), RS(160,
150), and RS(200, 190), respectively.

Fig. 7 shows the theoretical performance of concatenating
the aforementioned RS codes with practical and Ungerboeck
trellis codes. Notice that all practical codes are better at a block
error rate of 10~¢ or more. However, simulations reveal even
better results for practical codes.

Fig. 8 compares the simulated performance of the practical
and Ungerboeck codes. Notice here that the curves cross at
10~* compared to the theoretical curves in Fig. 6, which cross
near 10~3. This result is reflected in the concatenated case,
shown in Fig. 9, where the practical codes are shown to be
better than the Ungerboeck codes at a block error rate of 10~
or more. This clearly shows the performance advantage of the
practical codes.
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VI. SUMMARY

In this paper, it was argued that for concatenated cod-
ing systems employing QAM-based trellis coded modulation,
optimization of coding gain is achieved by analysis of the
number of nearest neighbors, where as for nonconcatenated
systems the ACG is the parameter of interest. A practical
concatenated coding scheme based on a QPSK trellis code
employing a “standard” rate 1/2 64-state code was shown to
perform better than a rate 2/3 16-state code. Furthermore, the
practical scheme has a distinct implementation advantage over
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other trellis coding schemes due to the fact that a standard
off-the-shelf Viterbi decoder can be used in the trellis decoder
rather than a custom part.

REFERENCES

[1] A. R. Caulderbank and N. J. A. Sloane, “New trellis codes based
on lattices and cosets,” IEEE Trans. Inform. Theory, vol. IT-33, pp.
177-195, Mar. 1987. ’

[2] G. C. Clark and J. B. Cain, Error-Correction Coding for Digital
Communications. New York: Plenum, 1981,

[3] G. D. Forney, Jr., “The Viterbi algorithm,” Proc. IEEE, vol. 61, Mar.
1973.

[4] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[5] J. P. Odenwalder, “Optimal decoding of convolutional codes,” Ph.D.

thesis, Dept. of Elec. Eng., Univ. of Calif. at Los Angeles, Jan. 1970.

E. Biglieri, D. Divsalar, P. McLane, and M. Simon, Introduction of

Trellis-Coded Modulation With Applications. New York: Macmillan,

1991. -

[71 G. Ungerboeck, “Channel coding with multilevel/phase signals,” /EEE
Trans. Inform. Theory, vol. IT-28, pp. 55-67, Jan. 1982.

[8] G. Ungerboeck, “Trellis-coded modulation with redundant signal
sets—Part I: Introduction,” IEEE Commun., vol. 25, pp. 5-11, Feb.
1987.

[9]1 G. Ungerboeck, “Trellis-coded modulation with redundant signal

sets—Part II: State of the Art,” IEEE Commun., vol. 25, pp. 12-21,

Feb. 1987.

A. Viterbi, J. K. Wolf, E. Zehavi, and R. Padovani, “A pragmatic

approach to trellis-coded modulation,” IEEE Commun. Mag., vol. 27,

pp. 11-19, July 1989.

Y. Yasuda, Y. Hirata, K. Nakamura, and S. Otani, “High rate punctured

convolutional codes for soft decision Viterbi decoding,” IEEE Trans.

Commun., vol. COM-32, pp. 315-319, Mar. 1984.

Y. Yasuda, Y. Hirata, K. Nakamura, and S. Otani, “Development of

a variable-rate Viterbi decoder and its performance characteristics,” in

Proc. 6th Ann. Conf. Satel. Commun., Phoenix, AZ, Sept. 1983.

6

[10]

f11]

[12]

Chris Heegard (S’75~-M’76-S°79-S°80-81) was
born in Pasadena, CA, on Oct. 4, 1953. He received
the B.S. and M.S. degrees in electrical and computer
engineering from the University of Massachusetts,
Amberst, in 1975 and 1976, respectively, and the
Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA, in 1981.

From 1976 to 1978, he was an R&D Engineer at
Linkabit Corp., San Diego, CA, where he worked
on the development of a packet-switched satellite
modem and several sequential decoders for the
decoding of convolutional codes. In 1981, he joined the faculty of the School
of Electrical Engineering, Cornell University, Ithaca, NY, as an Assistant
Professor; he was appointed to Associate Professor, with tenure, in 1987.
At Cornell, he teaches courses in digital communications, error control codes,
information theory, detection and estimation theory, digital systems, and audio
engineering. His current research interests include information, coding, and
communication theory; algorithms for digital communications; coding for
computer memory systems; signal processing and error control in optical and
magnetic recording systems; audio signal compression and analysis/synthesis
using multiresolution and wavelet filtering; algebraic coding theory; and
symbolic and numerical computer methods. He is an active member of the
consulting community. He has worked on problems of digital HDTV and cable
TV transmission, DSP and hardware-based trellis-coded modems, modulation
and error control for optical LAN’s, and modulation and coding for recording
systems. In 1984, he received the Presidential Young Investigator Award
from the National Science Foundation and the IBM Faculty Development
Award. He has ongoing research support from the NSF as well as AT&T and
IBM. He has been involved in the organization of several IEEE workshops
and symposia. In 1986, he was elected to the Board of Governors of the
Information Theory Society of the IEEE and reelected in 1989; he is currently
Second Vice President of the group.

Dr. Heegard is a member of IEEE, AES, and Eta Kappa Nu.

Scott A. Lery (M’85) received the B.S. degree in
electrical engineering and computer science from
the University of Califonia, Berkeley, in 1980,
and the M.S. degree in communications theory
and systems from the University of California, San
Diego, in 1984.

From 1980 to 1982, he was employed by the
NCR Corp., San Diego, CA, as an Engineer working
in the area of large-systems CPU hardware design.
From 1982 to 1990, he was employed by the Link-
abit Corp., San Diego, CA, as a Senior Engineer
working on the performance analysis and design of military modems and
satellite systems. In 1990, he joined the Advanced Development Group at the
VideoCipher Division of General Instrument Corp., San Diego, CA, where
he has been the Principal Staff Engineer on the HDTV transmission project,
currently being tested by the FCC in competition for the American HDTV
standard. He has six patents pending related to the HDTV project. His main
interests are coding, adaptive filtering, and communications system simulation.

Woo H. Paik received the M.S. and B.S. de-
grees in electrical engineering from Seoul National
University, Seoul, Korea, and the Ph.D. degree
in electrical engineering from the Massachusetts
Institute of Technology, Cambridge.

He is Vice President of the Advanced Develop-
ment Group of the VideoCipher Division of General
Instrument Corporation, San Diego, CA. He is cur-
rently leading the research and development effort
in the Advanced Development Group, where he is
responsible for developing the digital HDTV/NTSC
compression algorithm and computer simulation as well as for designing real-
time demonstration hardware of the DigiCipher™ system. He is one of the
coinventors of the VideoCipher satellite television encryption system, which
became the de-facto standard of the C-band satellite video transmission used
by most cable television programmers. He joined M/A-Com Linkabit, Inc.,
in June 1978. Over the past twelve years, he has led numerous development
programs in the area of military and commercial satellite communications
and digital signal processing. He has held a variety of positions with
M/A-Com and General Instrument, including Senior Scientist, Director of
Engineering, Assistant Vice President of Engineering, Assistant Vice President
of Advanced Development, and his current position as Vice President of
Advanced Development.




