242 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 10, NO. 1, JANUARY 1992

Maximum Entropy Charge-Constrained Run-Length
Codes

Kenneth J. Kerpez, Member, IEEE, Ayis Gallopoulos, and Chris Heegard, Member, IEEE

Abstract—This paper presents a study of runlength-limiting
codes that have a null at “‘zero frequency’’ or ‘‘dc.”” The class
of codes or sequences considered is specified by three parame-
ters: (d, k, ¢). The first two constraints, d and &, put lower and
upper bounds on the runlengths, while the ‘‘charge con-
straint,” c, is responsible for the spectral null. A description
of the combined (d, k, ¢) constraints, in terms of a variable
length graph, and its adjacency matrix, A(D), are presented.
This new approach to describing these constraints leads to a
concise description of many properties of the charge-con-
strained codes. The maximum entropy description of the con-
straint described by a runlength graph is presented as well as
the power spectral density. The results are used to study sev-
eral examples of (d, k, c) constraints: the (d = 0,k =1,c = 1)
constraint (which is equivalent to the ‘““FM”’ code), the (d = 1,
k = 3, ¢ = 3) constraint (which has capacity 1/2), and the (0
=d = 2,k =3, ¢c = 2) constraints. The procedures of finding
the maxi-entropy distribution and power spectral density in-
volve the determination of certain eigenvalues and eigenvectors
of an associated with adjacency matrix A(D). The eigenvalues
and eigenvectors of the classes of (d, k = 2¢ — 1, ¢) and (d, k
=d + 1, ¢) constraints for (c = 1, 2, - - - ), are shown to satisfy
certain second-order recursive equations. These equations are
solved using the theory of Tchebysheff polynomials. The results
obtained are useful tools to compute the maximum entropy dis-
tributions and power spectral densities of many constraints.

I. INTRODUCTION

HIS paper presents a study of runlength-limiting codes

that have a null at ‘‘zero frequency’” or “‘dc.”” Such
codes are described by sequences that satisfy a ‘‘running
digital sum’’ or ‘‘charge’’ constraint. The class of codes
or sequences considered are specified by three parameters
(d, k, ¢); the d parameter controls the minimum run-
length, the k parameter controls the maximum runlength,
and the ¢ parameter determines the charge constraint [1]-
[6], [32].

The paper begins by describing constrained binary sig-
nals and codes. It presents a description of the (d, k, ¢)
constraints in terms of a variable length graph [7], [8].
This new and (in our view) most natural approach to de-
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scribing these constraints leads to a concise description of
many properties of the charge-constrained codes.

The maximum entropy distribution of a code or con-
straint described by a variable length graph is presented;
the results follow from the Perron-Frobenius Theory [9]-
[13]. It is shown how the results of [14], together with
the maximum entropy distribution of the (d, k, ¢) run-
length graph, determine the power spectral density of
these constraints [15]-[22]. The result is Theorem 1.

The results are used to study several examples of (d, k,
¢) constraints. First, the (d = 0, k = 1, ¢ = 1) constraint,
which is equivalent to the ““FM’’ code, is used to show
how our approach yields a well-known power spectral
density result. Next, a new result, the maximum entropy
distribution and power spectral density of the (d = 1, k
= 3, ¢ = 3) constraint, is obtained [2], [23]. This con-
straint is of interest because it has a positive d constraint
and a capacity that is rational, 1/2 (a ‘‘rare’” event [23]).
The closed-form solution to the power spectral density
shows that the answer is a rational function over the ra-
tional numbers Q, not the extension field Q[\/f], as ex-
pected by the theory. (This leads to a ‘‘conjecture’’ con-
cerning the minimal field over which the power spectal
density is defined.) Finally, (0 = d < 2,k =3,¢c = 2)
constraints are presented so that the effect of the d con-
straint can be seen and to demonstrate certain issues of
the theory.

In the closing sections of the paper, it is described how
the eigenvalues and eigenvectors of the classes of d, k=
2¢ — 1,¢) and (d, k = d + 1, ¢) constraints (¢ = 1, 2,
-+ +) satisfy certain second-order recursions. The solu-
tion of the recursive equations relies on the theory of
Tchebysheff polynomials; the theory is briefly reviewed.
The results obtained are useful tools for computing the
maximum entropy distributions and power spectral den-
sities of many constraints (for example, these constraints
cover all the examples presented except for the “*(d = 1,
k = 3, ¢ = 3)”’ constraint).

II. MaxiMmuM ENTROPY, CONSTRAINED, BINARY
SIGNALS
A. Constrained Binary Signals
In a variety of data communications and storage sys-

tems [2], [5], [6], [18], information is represented by a
synchronous, binary transmit signal of the form
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w(t) = ZoajBA(z —ja),  ae{-1, +1},
2

1 0=<:1<A
B,(n) = . ey
0 otherwise

where the coded sequence {a;} is the unique representa-
tion of the message sequence {m;} (m; € {—1, +1}). In
practice, the encoding of the message is provided at a fixed
rational rate R = k/n, and density D = R/A. A practical
encoder (or encoding function) is implemented as a sta-
tionary, k input, n output, finite state machine (FSM) with
M states; a “‘block code’ is a trivial FSM with M = 1
state. Examples of block encoders are: 1) the rate R = 1,
non-return to zero (NRZ), a; = m;; and 2) the rate R =
1/2, Manchester Code, (a;, @z +1) = (—m;, m)). Ex-
amples of encoders with nontrivial memory are: 3) the
rate R = 1, non-return to zero inverted (NRZI) with two
states, §; = @;_| € {—1, +1}, a; = m;s;; and 4) the rate
R = 1/2, modified frequency modulation (MFM) code
with four states, (s7, s}) = (m;_y, az;-) € {— L, +1}?

(+s}, —s}) m = —1; ‘
@y, @) = { (=5}, =s))  m=+Ls;=+1
(+s}, +s}) m; = +1, s,2 = —1.

Encoding functions, such as those described above,
constrain the set of possible transmitted signals, w(?), that
can appear at the output of an encoder. The set of output
sequences, {a;} € €, is called the codeword set or simply
the code.

In this paper, we are interested in characterizing statis-
tical properties of codes for the class of “*(d, k, ¢)’" con-
straints (in the above examples: 1) (d = 0, k = o, ¢ =
©);2)d=0,k=1,c=1;53d=0,k=0,¢c=
®); 4) (d = 1, k = 3, ¢ = =)). The statistical aspects of
a code, G, can be introduced by assuming that input, {m,},
to an encoder is a random sequence (i.e., an independent,
identically distributed, Bernoulli (1/2), binary se-
quence). This randomness at the encoder places a proba-
bility measure (or distribution) on the code §; it is this
measure that determines the statistical properties and is
the measure of interest in this paper. Note that the max-
entropic measure on the code, €, makes the code se-
quence {a;} and the transmit signal w(r) random pro-
cesses. In this way, these processes have well-defined
power spectral densities. As will be demonstrated, these
densities can be determined algebraically.

In general, the distribution on the code € can be deter-
mined as the solution to a maximum entropy problem.
The solution is independent of the actual encoding func-
tion and can be characterized explicitly (see Section II-D).
Thus, for example, as far as we are concerned, both NRZ
and NRZI are the same (they both place the uniform mea-
sure on the set of all binary strings) even though they in-
volve distinct mappings from the set of messages onto €.
This is also true for the Manchester code since other en-
coders for this code (Bi-phase, frequency modulation)

produce the same set of strings, €, with the same proba-
bility measure.

A binary encoding function defines a code € (the set of
binary output strings) and a probability measure on the
code. Another way to define a code € is in terms of simple
constraints or restrictions on the set of allowed binary se-
quences. While it is sometimes possible to generate a
given code €, described in terms of constraints, as the set
of outputs of a FSM encoder, this is usually not the case.
(A necessary and sufficient condition for this to occur is
for the capacity of the code to be a rational number [8],
[23], [24], see Section II-D). However, a natural notion
of probability measure for the code € is still defined in
terms of a maximum entropy distribution [9], [17], [20]-
[22]. Thus, statistical measures for codes described in
terms of constraints are well-defined and meaningful. We
might note that, in practice, encoders are designed to gen-
erate sequences that satisfy a simple constraint at a fixed
rational rate that is ‘‘close’’ to the capacity of the con-
straint. In this way, the code generated by the encoder is
a subset of the code defined by the constraint [7], [8],
[24]. If the rate of the encoder is close to the capacity of
the constraint, then one would expect that the statistical
properties of the code described by the constraint
“‘closely’’ approximate the statistics of the code gener-
ated by the encoder. It is for this reason that we study the
statistics of the maximum entropy, runlength constraints.

B. The (d, k, c) Runlength Constraints

The (d, k, ¢) constraints are easily described in terms
of runlengths (see Fig. 1). A runlength of a binary signal
is equal to the length of time that the signal is constant.
Define the rransition times of the transmit signal w(#):

f, = inf {tf|t > f;_, w(n) # w(t— )}
then the runlengths

Tl=t1_lo,Tzztz_tl,T3=t3—12,"',

T =

;=1

j—tj—l’..-

Note that since w(f) is synchronous (1), the runlengths
are multiples of the clock period A. It should be clear that
the runlengths of the signal w(z) are determined by the
runlengths N; = T;/A of the coded binary sequence {a;}

np=min {ili >y, a #a, ), N=m—n_.

The (d, k) runlength constraints maintain uniform lower
and upper bounds on the runlengths, for all j,

Toin = Ad + 1) < T; < Ty = Ak + 1)

or, equivalently,

Nm«m=(d+1)ij5Nmax=(k+l).

The upper bound, Ty, is usually imposed for reasons of
clock recovery while the lower bound, Ty, is used to
help the detection process by mitigating some of the ef-
fects of intersymbol interference [5].
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Fig. 1. The run-lengths of a binary signal w ().

The charge constraint (c) is used to maintain a uniform
bound on the magnitude of the integral (i.e., ‘‘running
digital sum’’) of the transmit signal, for all ¢,

= c.

1 t
a \ So w(r) dr
This constraint guarantees that the spectral component
(both the discrete and continuous spectra) of w(¢) at zero
frequency is zero for all codewords [1], [3], [4]; this is
important in a variety of applications [2], [5], [6]. In ad-
dition, it has been recently demonstrated that codes sat-
isfying a charge constraint have ‘‘good’’ noise immunity
properties when they are used over channels with transfer
functions that have a spectral null at zero frequency [6].
It is interesting to note that the charge constraint is also
described in terms of the runlengths of the codewords.
First, we note that the charge constraint need only be sat-
isfied at the transition times, for all j,

A

=c

S w(r) dr
0

and at these times

1

A

J
P2 (—1)'N,-| = U]

Sl w(7r) dt
0

where the sequence U; = N; — U;_y, Uy = 0. Thus, the
charge constraint is equivalent to |U;| < ¢ for all j.

The (d, k, ¢) constraint combines the runlength and
charge constraints. A binary sequence satisfies (d, k, c) if

and only if the runlengths {N;} satisfy, for all j,

d+1 <N <k+1(=20 (2a)

d+1—-c=sU =c (2b)

Note that the charge constraint imposes a maximum run-
length since N; = U; + U;_; < 2c¢; thus Ny, < 2c o1
in terms of the ‘‘k’’ constraint, k < 2¢ — 1. Also, since
runlengths are bounded from below, N; = d + 1, the {U;}
sequence can take on only 2¢ — d values since U; < ¢
andU;=N; - U;_;=zd+1—-c

C. The Runlength Graph

The code § of virtually every practical encoder or run-
length constraint (e.g., the (d, k, ¢) constraint) can be
represented by an irreducible, finite state, runlength graph
(see Fig. 2). A runlength graph, ® = (&, G, I), consists
of a finite set of |&| states and a set of directed edges €
= U, 1ee?@pn . Each edge e € G, , represents a link

..
.
NRZ A(D) = D+l§ +3 +ﬁ‘ + ...
& D
NRZI =i
Manchester Code ! 0 D
P I¢osmo Aoy = |° 7
(d=0, k=1, c=1) 1 D D
D +D Ds-
MFM ‘0_ ¢ am = o,
D D
0 000D
0 0 0 D2 D3
(d=1, k=3, c=3) =lo 0o 2 1
o oo
D D D4 0 0

Fig. 2. Examples of run-length graphs and their adjacency matrices.

going from state m € & to state n € © and has an asso-
ciated positive integer length, l(e). The lengths distin-
guish the edges in the subsets G, ,: if €, €’ € G, then
I(e) # I(e'). A runlength graph is a special instance of a
“‘variable length graph’’ as defined in [8].

The runlength graph describes the set of possible se-
quences of runlengths of the code or constraint. A path
through the graph, v = e,, €5, €3, * * * €, is a valid se-
quence of edges; if ¢, € €, ,, ¢ € €, thenn = i If
every pair of states of the runlength graph is connected by
at least one path, then the runlength graph is said to be
irreducible. The length of a path, I(y), is the sum of the
edge lengths, I(y) = If-, l(¢;). The paths through the
graph represent valid runlength sequences determined by
the lengths of the edges, N, = l(e)), N, = le,y), N3 =
1(63)3 ct

It is assumed that the runlength graph is lossless or fi-
nite to one. This means that any doubly-infinite runlength
sequence is produced by a finite number of valid edge
sequences. Equivalently, this means that any finite edge
path is uniquely determined from the initial state, the fi-
nite runlength string associated with the path, and the fi-
nal state. One sufficient condition for this to happen is if
the graph is deterministic or unifilar. In this case, for each
state m, the lengths distinguish all the edges starting at
state m, U, &, , (or the graph is backward deterministic
meaning the incoming edges, U,G, , are uniquely la-
beled). A weaker sufficient condition is that the graph is
right closing meaning that, for each state m, the semi-
infinite edge paths leaving state m are uniquely labeled
(but not necessarily on the first step, as in the determin-
istic case). Similarly, a graph can be left crossing (back-
ward right closing) to ensure that the graph is lossless.
Furthermore, assuming the graph describing a constraint
is lossless is not a restricting assumption; if a graph is not
lossless, then the graph is not presenting the constraint in
an efficient manner (i.e., it is a ‘‘bad’’ presentation of the
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constraint). In fact, any constraint presented by a graph
that is not lossless has another presentation, in terms of
alternate graph, that is lossless.

Associated with the runlength graph of a code, €, is a
|&| x |@|, square adjacency matrix, A(D), where the m,
n € & term

2. D'

e€@m.n

Am,n(D) =

The adjacency matrix is a matrix of polynomials (or ra-
tional functions) in the variable D over the integers, Z.
(Whenever the number of edges |€| is finite, the adja-
cency matrix is a polynomial matrix; this is true whenever
there is a <k’ or ‘‘c’’ constraint.) The adjacency matrix
gives a complete and compact algebraic representation of
the runlength graph. As we shall see, this matrix is useful
for determining the capacity and maximum entropy dis-
tribution of the code € and for finding the power spectral
densities of the associated random processes.

The general form of the adjacency matrix for the (d, k,
¢) constraints, derived from (2), has a regular structure.
For these constraints, the matrix has size 2¢ — d) X (2¢
— d) and is constant on the antidiagonals. If the k is non-
trivial (i.e., k + 1 < 2¢), the lower right of the matrix
is zero,

0
0
AD) = :
o D
| pe+t péar2 pd+d

while in the case of k = 2¢ — 1, the lower right corner
is filled, :

[ 0 0 Dd+1
0 0 . pi+l pi+?
AD) = | - :
o D' DIt ... px-!
LDd-H pit? pd+2 ... p¥x-l px |

Note that the (d, k, ¢) graph associated with (2) and the
adjacency matrix is deterministic (and backward deter-
ministic) and, thus, represents a lossless presentation for
the constraint.

D. The Maximum Entropy Distribution

Given a code €, one might ask for the probability dis-
tribution that maximizes the entropy H(a) of the code se-
quence {a;}, subject to the constraint that the sequence is
a member of the code {g;} € € (this problem was origi-
nally stated and solved by Shannon [9]). When the code
@ is described by a runlength graph @, the solution to this
problem is directly given in terms of the adjacency matrix
of the graph A(D) [8], [9]. The maximizing distribution

Dd+2

245

is obtained by assigning the proper fixed probabilities to
the edges of the graph, p*(e), e € €. Such a fixed assign-
ment makes the state sequence a stationary Markov chain
with a stationary distribution w*(m), m € ©.

Consider a fixed probability assignment to the edges
p(e). Stochastically, the runlengths are then determined
from the state sequence; for e € €, ,, m € &,

Pr Uy, = n, N; = Ue)|U; = m) = ple),
Pr(U;=m) = w(m).

Note the state transition probabilities are obtained by
summing the edge probabilities

Pr (U, = n|Uj=m) = 2 po)

In this way, the runlengths form a stationary random pro-
cess that is a ‘‘random function’’ of a stationary Markov
chain. These probabilities are conveniently described in
matrix form [8]. Define the |&| % |&|, square edge prob-
ability matrix, G(D), where the m, nth term

G,.D) = 2 p(eD".

e€@m.n

d+1
0 -+ 0 D]

0 Dd+1 Dd+2

D* 0
R » LI || 0 _|

Then the state transition probability matrix P = G(D)|p -,
and the stationary distribution vector is the positive left
eigenvector of eigenvalue 1, that sums to 1: 7'P = ',
> 0, 7'l = 1 (all vectors are taken to be column vectors).
The entropy of the runlength process is equal to the
conditional entropy of the runlength, given the state

1
lim N H(le NZ; o
jmee ]

= — 2 2 w(mp(e) log (pe)) -

me® eeCm.n

HN) <, N) = HN,\|U)

and is related to the entropy of the coded sequence by the
relation H(a) = H(N)/E(N), where E(N) is the expected
length of a runlength. When the edge probabilities are ju-
diciously chosen, the entropy of the coded sequence is
maximized (note this maximizes the entropy of the coded
sequence over all measures on the code €). The maxi-
mizing entropy of the coded sequence C = H*(a) is
known as the capacity of the code; the number of strings
of length n in € grows exponentially for large n'as ~2".

'To be specific,
1
lim — log (I€,]) = C = H%@)
n—o N

where G, is the set of a sequences of length n supported by the constraint.
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The solution to the maximum entropy problem revolves
around the Perron-Frobenius eigenvalue of the adjacency
matrix A(D). Define the characteristic polynomial of the
adjacency matrix:

x4 =z"det I — Az ")) =xo + xaiz + - + 2"

where [ is the identity matrix and m is the degree of the
determinate, m = deg (det (I — A(D)). The Perron-Fro-
benius eigenvalue (PF-eigenvalue) is the largest magni-
tude of the (complex) roots of the characteristic polyno-
mial

A= max |af

aeC
xAle) =0
Note that for a variable length graph, the PF-eigenvalue
is a *‘generalized eigenvalue’’; if x4(a) = 0, then the ma-
trix A(a~") has an eigenvalue of value 1 (i.e., there exists
nontrivial solutions to A(a™")v = v). From the Perron-
Frobenius Theory [9]-[13], it is known that \ itself is a
root of the characteristic polynomial x4(\) = 0 and de-
termines the capacity of the code C = log (N\)’.

Given the adjacency matrix A(D) and the PF-eigen-
value A, the max-entropic probabilities are determined in
the extension field of the rationals Q(\). The extension
field Q(\) is the smallest extension of the rationals Q that
contain A. Algebraically, Q(N) is isomorphic to the ring
of polynomials in z over Q, modulo the minimal polyno-
mial my(z) of A\, Q(N) = Q[z]/m\(z). The minimal poly-
nomial my(z) € 3(z) is a monic integer polynomial of
smallest degree for which A is a root (i.e., N is an alge-
braic integer). The minimal polynomial m,(z) can be de-
termined by factoring the characteristic polynomial x,4(z)
over the rationals, finding the factor for which A is a root,
then normalizing (i.e., a monic integer polynomial).

To find the max-entropic probabilities, one must first
find left and right, positive, eigenvectors of eigenvalue 1,

wAN Y =w', AAYw=v, w,v >0,
w, vE Q()\)lgl

(their existence is guaranteed by the Perron-Frobenius
Theory). Then, the edge probability matrix

GD) = V'AN"'DyWV

or
—l(e)

pHe) = ",

o eecC,,

and the stationary distribution vector

1
(@ = ——w'V,
wuv
or
w,, U
wHm) = “5F, me®

21t is at this point that the assumption that the graph is lossless is re-
quired. In general, C < log (\), with equality in the lossless case (and
thus the justification of the term *‘lossless’”).

where V = diag (v) is obtained by forming a diagonal
matrix from the right eigenvector v.

E. The Power Spectral Density

The max-entropic measure on the code € is one that
makes the runlengths a stationary random process. Under
this measure, the coded sequence {a;} and the transmit
signal w(r) are periodic random processes with period p
= 1 and pA, respectively. The period p is a divisor of the
period g of a runlength graph © for the code €. The fun-
damental period q of the runlength graph is the number
equal to the greatest common divisor (GCD) of the lengths
of the simple cycles of the runlength graph (a cycle is a
path with a common beginning and ending state; a cycle
is simple if no state, other than the beginning/ending state,
is visited more than once). Again, the Perron-Frobenius
Theory gives an algebraic characterization of the period.
The period g is equal to the number of roots of the char-
acteristic polynomial with magnitude \. In fact, g is the
largest integer such that (z7 — A7) divides x4(2). Ifg =
1, then the runlength graph is aperiodic or stationary.

The power spectral densities for periodic random pro-
cesses are well defined by phase randomization. A sta-
tionary process is obtained by randomly shifting the pe-
riodic process. For example, if w(?) is periodic with period
pA, and p|q, then w(f) = w(r + ©) is a stationary process
if © is independent of w () and uniformly distributed over
the interval [0, pA] (or some integer multiple of the pe-
riod, e.g., [0, gA]). The power spectral density S,,(f) of
w(?) is then defined to be the Fourier transform of ‘the
autocorrelation function of the stationary process w (2).

In [14], it is shown how to obtain the power spectral
densities S,(e'*™) and S,(f) from the edge probability
matrix G(D). Define the sequence x; = (a; — a;_1) /2,
then

Sa(eiZ'lrf) — Sx(eiz‘”f),

1
sin (xf)?
1
A(xf )

SAf) = S{e?7%) = Asine (FAYS,(e"*?)

and
_ 1 ' -1
$,(D) = <—__1r'G'(l)l> ©'[d + GD))

+d+G6OD Y !'-m

where [ is the identity matrix and G'(l) =
(d/dD)G(D)|p -, is the derivative of edge probability
matrix G(D) evaluated at unity. In our case, the edge
probability matrix G(D) is obtained from the adjacency
matrix A(D), the PF-eigenvalue X, and the right and left
eigenvectors v, w. Thus, the following theorem holds.
Theorem 1: The spectrum is given by the formula

1
54Dy = <m(x_>
+d+AN'D Y)Y -

) w{d + AN'D)!
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Where
A'()\ l) = /1(D)l ="
lD D=\"1-

—0O—

Note the power spectral densities are obtained in terms
of rational functions in D over the extension field ().

III. ExaMpLES OF (d, k, ¢) RUNLENGTH CONSTRAINTS

In this section, we present several examples of (d, k, ¢)
runlength constraints. First, the (d = 0,k=1,c=1
constraint, which is equivalent to the ““FM’’ code, is used
to show how our approach yields a well-known power
spectral density result. Next, a new result, obtains the
maximum entropy distribution and power spectral density
of the (d = 1, k = 3, ¢ = 3) constraint [2], [23]. This
constraint is of interest because it has a positive d con-
straint and a capacity that is rational (1 /2). Finally, (0 <
d < 2,k =3, ¢ = 2) constraints are presented so that the
effect of the d constraint can be seen and to demonstrate
certain issues of the theory.

B. The (d = 1, k = 3, ¢ = 3) Runlength Constraint

0 0 0 0 D]
o 0 o D? D?
Aap)=| o o p* p* D*
0 D* D D* 0
| D2 D> D* 0 0 _]
m(z) = 2" — 2
v=w=[2,3\6, 4\ 4]
0 o o 0 D]
2Dp?* D?
0 0 0 —/— =
3 3
2 3 4
o o 220 D
GD) = 2 3 6
3p?> 3p* D*
0 - . —
8 8 4 0
2 3 4
D 3D D'
|4 8 8 1

39783 + 31768(D + D7)
+ 19209(D + D% + 7276(D° + D7)
+ 1263(D* + D™ + 1560(D° + D7)

(-1 + DY¥(—=1 + D7

+ 1678(D° + D% + 1840(D” + D7)

+ 716(D® + D% — 32D° + D7)
— 104D + D719

Sd{D) =

<1505 + 528(D7 + D) — 412(D* + DY) - 436(D° + D6)>

— 120(D% + D% — 16D + D7) — 32D + D7)
8015 + 4544 cos (27fA) — 626 cos (4nfA)
—~ 5920 cos (67fA) — 6310 cos (8xfA) + 179 cos (107fA)
— 44 cos (127fA) + 1286 cos (14wfA) — 376 cos (16mfA)

— 676 cos (187fA) — 176 cos (20mfA) + 104 cos (227fA)

S.(f) = A sinc [fA) <

A. The (d = 0, k = 1, ¢ = 1) Runlength Constraint

AD_[O D}
(D) = b D

mz) =2 -2

v=w=[L AN
0D
GD)=|p p?
2 2
— -1 2 -2
sy = 84D+ DY + @+ D

8
S.f) = A sinc [fA(1 — cos (2zfA)).

1505 + 1056 cos (4xfA) — 824 cos (8nfA) — 872 cos (127fAN\
— 240 cos (16mfA) — 32 cos (20mfA) — 64 cos (24nfA)

This constraint is the basis of a family of codes, known
as Zero Modulation (or “ZM”’), introduced by Patel in
[2]. A study of the power spectral density of ZM was
reported by Lindholm in [30].

The closed-form solution to the power spectral density
shows that the answer is a rational function over the ra-
tional numbers Q, not the extension field Q[«/E], as ex-
pected by the theory.

This leads to the following:

conjecture: The power spectral density ofa d, k, ¢
constraint is a rational function over the extension field
O[N] C Ol

Note that the conjecture holds true for every example
in the paper (and every example we have tried).

We believe this result follows from the symmetry and
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(d=0,k=3,c=2)

@d=0k=1,c=1)

0 0.1 0.2 03 04 05
f

Fig. 3. Periodic spectrum, S,(e'*™/) ford = 0.

20

d=2k=3,c=2)

d=1,k=3,c=3)

(d=1,k=3,¢c=2)

0 0.1 ‘02 03 04 0.5
f

Fig. 4. Periodic spectrum, S, (e'*™/) ford = 1, 2.

nonnegative constraints of power spectral densities. For
example, as is well known, the power spectral density can
be factored [31] S,(D) = Kf (D) f(D™"), where f(D) is a
rational function over an extension of the rationals Q[y].
Thus, the power spectral density has a weli-defined
““square root.”’ If one shows that the factor f (D) has coef-
ficients in the field Q[\], then it should be possible to

prove the conjecture.

C. The (d = 0, k = 3, ¢ = 2) Runlength Constraint

0 0 0 D
AD) 0 0 D D?
"o b p* D3

D* D* D*

D. The d = 1, k = 3, ¢ = 2) Runlength Constraint

0 0 D?
AD)=|0 D? D?
D? D* D*

mz) =z2% —z* -2z + 1

]

W=2k=3,cx2

0 0.5

1 1.5 2
f

Fig. 5. Spectrum, S,.(e'*™) at equal density (A = log, (A)).

10

@aLkedead Gy il

0

-10

Swif) (db)

-20

Fig. 6. Spectrum, 5, (¢'*"/) at equal density (A = log, (A)) in dB.

m@ =2> — 3

v=w=][I,\ 2N

0 0 0 D]

D D?

0 O 2—3— '3—

G(D) = D3

o2 0 %

2 3 D*

D D 20 9

|3 3 9 ]
—1+D—1+DY%W@a7 +3D+D"!
D) = ) Y7+ 3( )

S.(f) = A sinc [fA) 4

33D — D™ )(~-D + 3D7")

(4 — cos (2nfA) — 3 cos (4mfA))

3(5 — 3 cos (4mfA))

v=w=1[—=4+ 5N + O\, =6\ + O\* + 10N°, -9 + 14N* + 14NY)
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0
D2

GD) = 0 X

2

0 D?
D3(—9 + 14\2 + 14\
(—19 + 28N + 33)\%)

D¥—4 + 5\ + 9\ D=6 + 9\ + 10\ D’

(=14 + 19N2 + 28\%) (=14 + 19N + 28\%) N

+ (=18 + 40N> + N\H(D? + DY) + (262 — 384N% — 460N (D? + D7)

<(—782 + 1110N? + 1454\% + (236 — 3387 — 432\)(D + DY >

+ (33 = 51N = S2A%(D* + DY) + (—122 + 178\2 + 216AY(D° + D7)

S(D) =

<(—3884 T 5580N2 + 7072\ + (—1632 + 2372\ + 2910\ (D? + D7) >

+ (272 — 386N — 506N (D* + DY) + (506 — 740N — 892\(D° + D%

S.(f) = A sinc [fAF

(—1016 + 1448\> + 1876X\%) + (—468 + 67602 + 844\*) cos (27fA)
+ (152 = 1927\* — 336\%) cos (4nfA)
+ (844 — 1220\ — 1520\*) cos (6wfD)
+ (488 — 712A* — 864\*) cos (87fA)

" 7(=1942 + 2790N + 3536\%) + (—1632 + 2372\ + 29100\*) cos (47fA) >
+ (272 — 386\ — 506NY) cos (81fA) + (506 — T40N* — 892\%) cos (127fA)

E. The (d = 2, k = 3, ¢ = 2) Runlength Constraint

: 0 D3
AD) = b D

m@) =28 —z2* -1
v=w=1[1+22+ N N+2\ + 2\
0 D?

GD) =| px1 + N2 D*
2+ 4N + 3\ N
(—12 — 2002 — 16\ + (6 + 10N + 8\H(D + D7)
( + (=3 = 5N — YD + D) + (6 + 10N + YD + D‘3)>
S.(Dy = + (=3 = 5N —aHD* + D
* (—88 — 156N — 116N%) + (14 + 24N> + 20\)(D* + D))
< — (34 + 58\ + 44NH(D* + DY) + (24 + 44N + 3H(D° + D-6)>

S.(f) = A sinc [fA)

6 + 10N> + 8\* — (6 + 10N> + 8\*) cos (67fA)

<22 T 300 + 290 — (7 + 1222 + 10A%) cos (4mfA) >

+ (17 + 2902 + 22\% cos (8afA) — (12 + 22N + 17XY) cos (127f4)

IV. CrLAssEs OF RUNLENGTH CONSTRAINTS:
k=2c—1ANDk =d + 1

Forthe casesk = 2¢c — landk=d + 1 (c =1, 2,
-« +), the éigenvalues and eigenvectors of A(D) are de-
termined by second-order recursive relations. These re-
cursions can be solved in terms of Tchebysheff polyno-
mials. It is shown how to apply the theory of Tchebysheff
polynomials to these problems.

A. Tchebysheff Polynomials

Tchebysheff polynomials are usually defined as poly-
nomials in x; these arise from the recursive relation
q)n + l(x) = qu)n(x) - q)n - ](-x) (4 D

where &, = 1, ®_, + & = 2x (note that either ®, or
®_, must also be specified to “‘solve’’ the recursion).
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Given a similar recursion of the form
V,.,=E¥, - F¥,_, (4.2a)
then it is easy to show that (4.1) is satisfied by identifying

v, E
= Py, and

d, (4.2b)
(assuming F, ¥, # 0).

Luke [25] defines two types of Tchebysheff polyno-
mials: the polynomials (in x), T,(x) and U,(x), are known
as Tchebysheff polynomials of the first and second kind,
respectively. They are defined with (4.1) and the initial
conditions

T,(x) = x, Uix) = 2x.
The Tchebysheff polynomials are concisely expressed in
terms of trigonometric functions

T,(x) = cos (n arccos (x))

sin ((n + 1) arccos (x))

Unlx) = — - (arccos (x))

The utility of the Tchebysheff polynomials is that any
linear combination of 7,(x) and U,(x),

q’n = O‘]Tn(x) t Un(x) (43)

will solve a recursion of the form of (4.1) and conversely
any solution can be put in this form. The coefficients «;
and o, are solved from the initial conditions (recall ®, =
1, (b,l + q’] = Zx):
® , 2x - &
a] = —= —
x x
and

x =9

- (®, — x) _ (¢, - %)
2x ’

[25]

X X

Let ¥ = arccos (x), then (4.3) can be written:

+ (®) — ®_)sin((n + Dy
sin (y)2x

5 = ®_, cos (n7y)

X

(4.4a)

There are alternative formulas for ®,. From the CRC ta-
bles [26], (4.4a) becomes:

n = 2x sin (1) [®(sin ((n + 1)y))
- ®_, sin (n — Dy)]. (4.4b)

Now note that 2 cos (y) = 2x and &, = 1 implies &,
2x — ®_; = 2 cos (y) — ®_,, and from (4.4b)

"= o) [(sin ((n + 1)}y)) — ®_, sin (ny)].  (4.4c)
Also, ®_; = 2 cos (y) — ®, and from (4.4b)
' [®, sin (ny) — sin (n — Dy)]. (4.4d)

~ sin (7)
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From (4.2), if ®, = 0 then ¥, = 0 (assuming ¥, #
0). Setting (4.4b), (4.4c) and (4.4d) equal to zero with y
= arccos (x) shows:

®, =0 e ®_; sin ((n — 1) arccos (x))
= &, sin ((n + 1) arccos (x))

_(ILI sin (n arccos (x)) 4.5)

sin ((n + 1) arccos (x))
®, sin (n arccos (x))
= sin ((n — 1) arccos (x)).

Thus given a recursion in the form of (4.1), knowledge
of 2x, &, (or ®_,) will directly give the solution of &,
(4.4) and its roots (4.5).

B. The (d, k = 2¢ — 1, c) Constraint

The (d, k, ¢) constraint reduces to a (d, k = 2¢ — 1,
¢) constraint in the absence of a specific k constraint.
Given a ¢ constraint, the maximum run has length 2 ¢ and
sok <2c—1.

Theorem 2: Fix d = 0 and let A(D) be the 2¢ — d X
2¢ — d adjacency matrix of the (d, k = 2¢ — 1, ¢) con-
straint. Define ¥, = det (I — A(D)), where n c -
|d/2] . Then:

¥,., = (1 + D* - D¥*y, - DY,

where ¥, = 1 and

1+ D¢ d — even
WI:{I%—D""—DM d—odd

Note:
1 — D4*? — D¥*2 4 — even
1:{1—1)'”‘ d—odd’

The PF-eigenvalue, \, is the largest real valued solution
to the equation

sin [(c — d/2 + Dy(D™ "]
sin [(c — d/2y(D ")

D' +D ! =

where

D+ D' — D!
y(D) = arccos < > >
O
Corollary 3: In the case of a pure charge constraint (d
=0,k = 2¢ — 1), Theorem 2 reduces to the previously
known expression given in Chien [1]. In the case of d =
0,

(D) = arccos (D /2).
Thus, the PF-eigenvalue satisfies
cos ((¢c + 1)y(D™") sin (y(D™1) = 0.
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The largest value of D' that satisfies this equation is:

T
A = 2 cos (———2(C " 1)>

which is the same formula as presented in Chien.
—0O—

The Smith Canonical Form [10, 27]: Fixd = 0 and let
A(D) be the adjacency matrix of the (d, k = 2¢ — 1, ¢)
constraint, a matrix over the ring of polynomial over the
reals. Then there exists unimodular 2¢ — d X 2¢ — d
polynomial matrices E(D) and J(D) such that A(D) =
E(D)B(D)J(D). (A polynomial matrix is unimodular if it
is a unit in the ring of matrices, i.e., in this case the de-
terminant is a (nonzero) real constant.) The matrix B(D)
is a diagonal matrix with diagonal elements by(D), b,(D),
-+, b(D), such that b(D) divides b, , (D) for 1 < k
< 2c¢ — d. The matrix B(D) is known as the Smith Ca-
nonical Form of A(D).

Lemma 4: The Smith form of A(D) is

B(D) = D"l

where I is the 2¢ — d X 2¢ — d identity. The matrix
E) is:

D 1
ED) = | D? D 1
20-—4—1 DZ D 1

and the matrix J(D) is the matrix with all 1’s on the an-.
tidiagonal and zeros elsewhere

0 -+ 0
1 0
J(D) = .
1 0 cee O

Notice that the inverses J ~'(D) = J(D) and

1 0 0 --- 0
-D 1 0 -+ 0
E~Y(D) = 0 -D1 - 0
0 : 0 -D 1

O

The Smith Canonical Form is a useful tool for finding
the eigenvector for A(A™"); the result is stated in the fol-
lowing theorem.

Theorem 5: The left eigenvector, v AN Ho
satisfies the recursion

v),
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Vig1 = ()\ + )\-] - )\HZdil)vj - Vi
which is solved by
v; = sin ((7(N)

where (as in Theorem 2)

D+D' - D‘“")

y(D) = arccos < 2

The edge probability matrix G(D) is given by:

sin (ny(N))
sin (my(N\))
m=<2c—-—d,2c—d+1

)\2C'2d—m—n m+n—2c—d)

A

Gm.n(D) =
<=m+n<4c - 2d

0 otherwise

and the stationary probability vector is given by
. sin’ (my(\)
Tm = 2c-d ’

Z] sin® (jy(N)
=

—0O—

1l<sm=<2c—-d.

C. The (d,d + 1, c) Constraint

In this section, the tightest nontrivial k constraint is
analyzed. For a given value of d,letk = d + 1; the run-
lengths are constrained to be either d + 1 ord + 2. This
constraint has solutions of the form of Section III, but the
derivation of the eigenvector is simpler. The adjacency
matrix A(D) is the 2¢ — d X 2¢ — d matrix with D**"
on the principal antidiagonal and D?*? on the first sub-
antidiagonal.

Theorem 6: Fix d = 0 and let A(D) be the 2¢ — d X
2¢ — d adjacency matrix of the (d, k = d + 1, ¢) con-
straint. Define ¥, = det (I — A(D)), where n = ¢ —
ld/2] . Then:

‘I,"+] — (1 — D2d+2 _ D2d+4)‘1," _ D4d+6‘I,n_l

where
¥ 1 d — even
* " (p9' d-odd
and
1 — D2 — p¥*2 4 — even
¥, = il .
1 — D** d — odd

The PF-cigenvalue, \, is the largest real valued solution
to the equation

sin [(c — d/2 + Dy(D™H]

d+l _ p-1 _
b =D sin [(c — d/2y(D ]
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where

D—Zd—3 _ D—l - D
vD) >

arcco
(>

_O_
Theorem 7: The left eigenvector, v(A()\_l)v = ),
satisfies the recursion

Vye—d—-j-1 = (>\2d+3 - )\_)\_I)UZc—d—J = Vyc—d-j+1
which is solved by
v; =sin (Qc —d — i + Dy(\™Y)

where (as in Theorem 6)

-2d-3 _ -1 _
v(D) = arccos (D b D).

2
The edge probability matrix G(D) is given by:

_)\2072d7m7n
sin (2Qc ~d — n + Dy(A\™")

sin (Qc —d — m + y(\"™Y)
. ‘Dm+n72(c~d)

Gm,n(D) = 1

IA

m=<22c—-d,d+1

<m-+n<d4dc — 2,

L O otherwise
and the stationary probability vector is given by

. sift(@c—d—m+ Iy

Tm = 2c-d )

_Zl sin? (2c —d — j + Dy(AN"Y)
P

1=m=2c—d.

O

The proofs of the Theorems follow from the presented
theory of Tchebysheff polynomials and some delicate al-
gebraic and trigonometric manipulation. Since the results
themselves are (in our opinion) more interesting than the
proofs, we omit them here. We also mention that, in ad-
dition to obtaining recursive relations for the character-
istic polynomial and the components of the eigenvector,
other basic facts are known. For example, a closed-form
expression for (/ — A(D))"! has been developed. Anyone
interested in the details is encouraged to obtain the theses
[28], [29], in which these additional relations and com-
plete proofs can be found.
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