
1030 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 9. SEPTEMBER 1988 

Linear Sum Codes for Random Access Memories 

Abstract-Linear sum codes (LSC’s) form a class of error 
control codes designed to provide on-chip error correction to 
semiconductor random access memories. They use the natural 
addressing scheme found on RAM’s to form and access code- 
words with a minimum of overhead. 

In this paper, we formally define linear sum codes and examine 
some of their characteristics. Specifically, we examine their 
minimum distance characteristics, their error correcting capabili- 
ties, and the complexity involved in their implementation. In 
addition, we look closely at an easily implemented class of single, 
double, and triple-error correcting linear sum codes. 

Index Terms-Error control codes, memory fault tolerance, 
random access memories, redundancy in RAM’s, semiconductor 
memories. 

I. INTRODUCTION 

RROR control codes have been used for years to improve E the reliability of random access memory (RAM) systems. 
Until recently, however, they have been implemented at the 
board level [l], [ l l ] ;  typically, each k-bit word in a 
computer’s memory is stored as an n-bit codeword from an (n ,  
k )  binary block code, with each bit stored on a different RAM 
chip. 

As RAM chips have become bigger, with capacities in 
excess of 1 Mbit, the use of on-chip error control is being 
considered more and more as a means of constructing reliable 
memory systems. As chips become more dense, soft (or 
nonpermanent) error sources such as alpha particle radiation 
[2] and circuit noise can dominate RAM operation and make 
them useless; a two-tiered combination of chip-level coding 
and board-level coding may well prove to be the most effective 
means of controlling these soft error sources. In addition, 
recent results [3] have shown that the traditional means of 
controlling hard (or permanent) defects detected during the 
manufacturing process-row/column spare switching-may 
not be effective for very large memory arrays. Thus, the need 
for powerful, easily implemented codes for on-chip operation 
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may well become great within a few generations of memory 
devices. 

Two different codes have been used to provide on-chip error 
correction. The first is a bidirectional parity check code 
developed by Nippon Telephone and Telegraph [4]-[7] for use 
in 256K3, lM,  and 16M RAM’s; this code uses a simple 
product-code-type design to provide single error correction. 
The other is a shortened Hamming code implemented on an 
256K RAM by Micron Technologies of Boise, ID [8]. 

Linear sum codes (LSC’s) form a general class of codes 
which are suitable for on-chip error correction [9], [lo]. They 
are a generalization of the bidirectional parity check code 
which allows for multiple error correction. The linear sum 
codewords are two-dimensional and similar to product code- 
words; the difference lies in constraints put on the decoding of 
such codewords to make them more applicable to on-chip 
error correction. This constraint limits the error correcting 
capability of the codes to a function of the sum of the 
minimum distances of the constituent codes rather than the 
product. 

In this paper, we will define linear sum codes and list their 
major characteristics; in addition, we will examine some 
practical issues related to the implementation of one, two, and 
three-error correcting binary linear sum codes. The larger 
issues concerning on-chip error control-the cost-effective- 
ness of on-chip versus board-level coding, for instance-are 
not addressed. At this point, linear sum codes should be 
regarded as a “tool” capable of increasing the reliability of 
RAM systems; their role in an “optimal” error control 
configuration-if such a thing exists-will be determined by a 
better understanding of the error mechanisms that afflict 
semiconductor memories. 

11. A DESCRIPTION OF LINEAR SUM CODES 
In this section, we define what a linear sum code is and 

show why such codes are suitable for on-chip error protection. 
We briefly describe some important characteristics of these 
codes. 

A .  Code Definition 
Consider a k2 x k ,  array of q-ary memory cells containing 

an arbitrary pattern of symbols. (For most cases of interest, q 
= 2’ for some positive integer b; for RAM’s like those 
currently used, q = 2 . )  Call this the information array. To 
each of the k2 rows add rl = nl - kl  additional symbols such 
that each row constitutes a codeword from a systematic ( n l ,  
k l )  linear block code over Fq. (Here, Fq is the finite field 
containing q elements.) Similarly, add to each of the k l  
columns r2 = n2 - k2 parity symbols such that each column 
forms a codeword from a (possibly different) systematic (n2, 
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Fig. 1. The general layout of an (nl ,  k , ,  n,, k,) linear sum codeword. 

k2) linear block code. We call all possible configurations thus 
constructed for the given constituent codes an (n , ,  k l ,  n2,  k2) 
linear sum code over Fq. (Fig. 1)  

As described, sum codes are similar to the well-known 
product codes [12], the difference being that the “parities on 
parities” that appear in a product code are not computed. In 
addition, we include in our definition of linear sum codes a 
constraint on the decoding of such codes; specifically, we 
require that the estimate of any symbol in the information 
array be a function of only the row and column to which that 
symbol belongs rather than the whole codeword. 

The decoding constraint is imposed to make these codes 
structurally suitable for implementation in semiconductor 
RAM’S. These memory chips are arranged in rectangular 
blocks, and the addressed bit is specified as a word-linelbit- 
line intersection. Conceivably, linear sum codewords could be 
implemented on the word lines of a RAM; that is, the bit-line 
address could be split into two smaller addresses, forming a 
two-dimensional sum codeword in each word line. (The 
bidirectional parity check codes of [5]-[7] are implemented 
this way.) The decoding constraint means that to decode any 
given bit, only those bits sharing one of these smaller 
addresses with the desired bit are ever considered; thus, the 
decoding scheme takes advantage of the addressing scheme. 

B. Characteristics of Linear Sum Codes 

In this section, we examine the minimum distance and error 
correcting characteristics of linear sum codes. 

1) Minimum Distance Properties: It is well known [12] 
that the minimum distance of a product code is equal to the 
product of the minimum distances of the constituent codes. 
Since a sum codeword represents a “fragment” of a product 
codeword-with the corner parities removed-one might 
suspect that the minimum distance of a sum code is less that of 
the corresponding product code. The following lemma con- 
firms this for many interesting cases. 

Lemma 2.1: Consider an (n, ,  k , ,  n2, k,) linear sum code 
with minimum distance d,,,,,. Let dkln and dfn,, be the 
minimum distances of the row code and the column code, 

Furthermore, suppose the two systematic block codes making 
up the sum code have the following property. There exists in 
each constituent code at least one minimum weight codeword 
with exactly one nonzero symbol in the information segment of 
the codeword; that is, in the row code (resp., column code) 
there is a codeword of weight d;,, (resp., df,,,) with only one 
nonzero symbol in its information segment. In this case, (2.1) 
holds with equality. 

Proof: See the Appendix. 
This lemma gives one reason why we refer to these codes as 

sum codes (although the next section gives another, more 
compelling reason). It is worth noting that many important 
block codes-including parity checks, Hamming codes, and 
Reed-Solomon codes- have the property described in Lemma 
2.1; thus, the minimum distances of sum codes constructed 
from these block codes can be computed from (2.1). 

2) Error Tolerating Capabilities of Linear Sum Codes: 
The decoding constraint on linear sum codes suggests that 
minimum distance is not the best measure of a code’s 
performance; minimum distance gives the number of symbols 
where two codewords differ, but the decoding constraint tells 
us that the entire codeword is not available to the decoder. 

A better parameter is described as follows. Let b ,  be the 
maximum number of errors that can be tolerated in the ith 
row and j t h  column when decoding the (i,  j )th symbol in the 
information array; that is, there exists a decoding function that 
can map an ith rowljth column combination corrupted by up 
to b,, errors onto the correct (i ,  j ) t h  entry. (Note we say 
tolerated as opposed to corrected; we only want to correct the 
(i,  j ) t h  entry.) If we let 

b = min b,  
1 4 k 2  
J G k l  

then b indicates how many errors can be tolerated in any row1 
column combination. We will call such a code a b error 
tolerating linear sum code because as long as no rowlcolumn 
combination contains more than b errors, any bit in the 
information array can be correctly decoded as a function of the 
row and column to which it belongs. 

To see how b is related to the constituent codes, we must 
examine still another set of codes-those consisting of all 
possible row/column combinations. 

For a given (nl,  k l )  linear row code CI  over Fq and a given 
(n,, k2) linear column code C,, also over Fq, let C, be the set 
of all permissible ith rowljth column combinations. (1 < i < 
k2, 1 < j < k l )  That is, 

where F;1+”2-l is the set of all (nl  + n2 - 1)-tuples over Fq. 
(Note that we are taking the convention that the (i,  j ) t h  symbol 
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in the information array is the last entry in the (nl + n2 - 1)- 
tuple. ) 

Thus, for every (i,  j )  pair, CO is an (nl + n2 - 1, kl  + k2 
- 1) code over Fq. In particular, if we let 

H I = [ A I  * * a  Ani], 

and 

H2=[B, a * *  B,,] 

be, respectively, parity check matrices for the row code and 
the column code, then 

Finally, if we define the tolerating distance as 

then the following lemma holds. 
Lemma 2.2: Consider a linear sum code with tolerating 

distance d, as defined in (2.2). Such a code is capable of 
tolerating L(d, - 1)/2] or fewer errors in any row/column 
combination. 

Proof: Suppose we want to decode the (i ,  j ) t h  bit in the 

L 

is a parity check matrix of C,. 
Now, let us partition Cij. For each s E Fq, define 

C;,={c  E c,: C n l + n 2 - l = S } ,  

the set of all possible ith rowljth column combinations that 
contain the symbol s at the row/column intersection. It is easy 
to verify that C:. is a subgroup of C, and that { C$:s E Fq } are 
the q cosets of C;. 

Now, suppose we wish to decode the ( i ,  j ) t h  entry in the 
information array using only the ith row and the j t h  column. 
The following is a minimum-distance decoding algorithm. 

1) Decode the received row/column pair into the closest 
codeword c^ E C,. 

2) The estimate tit of the (i,  j ) t h  entry in the information 
array is given by tit = tnI + n2- 

A decoding error will be made only if sufficient symbol 
errors occur to cause the decoded (nl + n2 - 1)-tuple to be in 
the wrong coset. Thus, the relevant parameter is not the 
minimum distance of C, but rather the distance between the 
cosets. We define this parameter as 

djj=min min IIx-yII 
r * S  XECL 

where Hij is a parity check matrix for C,. 
If we let w = (r - s)- I (x  - y ) ,  then 

d.  = min II WII 
wH:, = 0 

W n l  + n 2 -  I = ’ 
= m i n  I I w I I .  

Thus, d, is equal to the weight of the minimum weight 
codeword in Cf. In fact, it follows that dij is equal to the 
weight of the minimum weight codeword in C: for any non- 
zero s. 

w E  C t  

information array. As long as there is a total of at most L(d, - 
1)/2] errors in the ith row and j t h  column, the codeword in C,J 
that is closest to the received row/column pair will be in the 
same coset of C; as the codeword that was originally written. 
Thus, the decoding algorithm described above will yield the 

Of course, the definition of d, given in (2.2) is not one that is 
easily computed. This is taken care of in the following lemma. 

Lemma 2.3: Consider an (nl,  kl, n2, k2) linear sum code 
over Fq with tolerating distance d,. Let dkln and dfnin be the 
minimum distances of, respectively, the row code and the 
column code. Then 

correct result. QED 

d, = db,, + dfnln - 1. 

Proof: Define Cf (1 < i < k2, 1 < j < k l )  as above. By 
construction, every codeword in C,!, is made up of a nonzero 
row codeword and a nonzero column codeword. Thus, 

dlJ 2 dbln+ dfn,,- 1 

for all i and j (1 < i < k2, 1 < j < k2); so, 

d, = min diJ 2 dLln + dkln - 1. 
1.1 

To get the opposite inequality, let c1 and c2 be minimum 
weight codewords for the row code and the column code, 
respectively. Let j ^  and î  be the positions of the first nonzero 
components in c1 and c2, 1 < i^< kZ, 1 < ;< kl. Once again, 
because the constituent codes form linear vector spaces, we 
can assume that these nonzero components are both the symbol 
“1 .” Construct the codeword c *  E C;;consisting of c1 in row 
rand c2 in column;. Clearly, c *  E Cl;, and IIc*II = d:,,, + 
diln - 1. Thus, 

d, < diy= dbln + dfn,,, - 1. 

And so, equality holds. QED 
Consider, then, the class of linear sum codes whose 

constituent codes have the property described in Lemma 2.1. 
This result tells us that, to decode any symbol in the 
information array of such a code, we can do no better looking 
at the entire codeword than we can just looking at the row/ 
column to which the desired symbol belongs. 
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111. A CLASS OF BINARY LINEAR SUM CODES SED code with k l  = 2/1 and k2 = 2/2, then 

In this section, we will take a close look at a particularly 
simple class of binary (i.e., q = 2) linear sum codes-those 
codes which can be constructed from parity checks, Hamming 
codes, and extended Hamming codes. We will show how these 
three simple codes can be used to implement single, double, 
and triple-error tolerating LSC's. 

We will tailor our analysis to issues concerning efficient 
implementation of these codes. The decoding algorithm given 
in Section 11-B-2 is a very general means of decoding a symbol 
in the information array of a linear sum codeword; in this 
section, we will examine easily implemented decoding al- 
gorithms which are specific to the codes we will be studying. 
In addition, we will determine what code rates can be achieved 
for each of the codes under consideration. 

In our analysis, we will make some assumptions about the 
dimensions of the LSC's we are studying. Specifically, we 
assume that the row codes are (n l ,  k , )  linear codes and that k l  
= 2'1 for some nonnegative integer I , ;  similarly, we assume 
that the column codes are (n2, k2) linear codes with k2 = 2/2. 
These assumptions are made because in a random access 
memory the rows and columns are defined in terms of a binary 
address; thus, the number of these rows and columns will 
always be a power of two. 

R*(L)=max{R(lI,  1 2 )  : lI+12=L} 

2L 
for even L 

The decoding algorithm for an SED/SED sum code is very 
simple. Suppose that w was written into the (i, j ) t h  position in 
the information array and a possibly corrupted version y is 
read back later. Let S, and S, be the modulo-two sums of the 
ith row and thejth column, respectively. Our estimate ti, of w 
is computed as follows: 

if (S,=S,=I)ti ,=y 8 1 

else G = y .  

If there is at most one error in the ith row and the j t h  column, 
6 = w. 

A .  Single-Error Tolerating Binary LSC's B. Double-Error Tolerating Binary LSC's 
The simplest linear sum code is one in which the two 

constituent codes are single-error detecting (SED) parity 
checks; such codes have minimum distance two, and thus an 
LSC constructed from two SED codes is a single-error 
tolerating code since the tolerating distance dt = 2 + 2 - 1 
= 3. We will refer to such a code as an SED/SED code. 

In the binary case, this code is in fact the bidirectional parity 
check code of [5]-[7]. Nippon Telephone and Telegraph has 
designed a 256K RAM and a 1M RAM which use this type of 
code to provide on-chip single-error protection. The advantage 
of this scheme is its high rate and its simple decoding 
algorithm. However, it is limited in that it is only capable of 
correcting a single error in each codeword; thus, in the event 
of a hard defect in a codeword, there is no soft error 
protection. 

Let us begin our analysis of the SED/SED codes by 
determining the maximum achievable rate for a fixed informa- 
tion array size. Suppose we want to provide single-error 
correction to a codeword containing 2 bits in the information 
array. We can achieve this with a (2'1 + 1, 2'1, 2/2 + 1, 2/2) 
SED/SED code where ll + l2 = L .  The number of parity bits 
in such a codeword is 2'1 + 2'2. If we define CY = l l /L ,  then ll 
= CYL and 12 = (1 - a ) L ;  thus, for fixed L = 1, + 12, we can 
write the amount of redundancy as a function of CY: 

By simple calculus, it is seen that for CY E [0, 11, Q(a) is a 
continuous, convex U function with a unique minimum at CY 

= 1/2. Thus, to minimize redundancy (and so maximize rate) 
we want to make the information array as square as possible. If 
we define R(l l ,  12) to be the rate of an (nl, k , ,  n2,  k2) SED/ 

From the results presented in Section I, we know that to 
design a two-error-tolerating liner sum code we must use 
constituent codes which satisfy 

dkin+dkin 2 6 ,  (3.1) 

where dLin and diin are the minimum distances of the 
constituent codes. There are two obvious alternatives which 
satisfy (3.1) with equality. 

1) Let both constituent codes be single-error correcting 
(SEC) Hamming codes (dmin = 3). We will refer to a code so 
constructed as an SEC/SEC linear sum code. 

2 )  Let one of the constituent codes be a single-error- 
correcting/double-error-detecting (SEC-DED) extended 
Hamming code (dmin = 4) and let the other be a single-error 
detecting (SED) parity check (dmin = 2) .  We will refer to such 
a code as an SEC-DED/SED linear sum code. 

In this section, we will analyze these two alternatives. 
Specifically, we will demonstrate easily implemented decod- 
ing algorithms which attain the two-error-tolerating goal, and 
we will determine what code rates are achievable for a fixed 
information array size. 

1) Decoding Algorithms: In this section, we will describe 
specific, easily implemented algorithms for decoding a bit in 
the information array of both an SEC/SEC code and an SEC- 
DEDISED code. Each of the algorithms described will 
correctly estimate the (i, j )th bit in the information array 
provided there is at most two errors in the ith row and the j th  
column. 

a) SEC/SEC Codes: We wish to estimate the (i, j ) t h  bit 
in the information array based on the ith row and the j th  
column. 
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Let S,  be the syndrome of the ith row, and let S, be the 
syndrome of the j t h  column. For simplicity’s sake, let us 
assume that the syndromes are computed such that they 
“point” to the estimated error position; that is, S, = m for 1 
< m < n, implies that when the mth hit in the ith row is 
inverted, the ith row constitutes a valid codeword from the 
row code. Of course, S, = 0 implies that the ith row already is 
a valid codeword. Similarly define S , .  

Just as in Section 111-A, assume that w was written into the 
(i, j ) t h  position in the information array and that at a later time 
we read back a possibly corrupted version y .  Our estimate G 
of w is then computed according to the following algorithm: 

if ((S,=O) or (S,=O))G=y 

else if ( (S ,= j )  or ( S , = i ) ) G = y  e 1 

else G = y .  

Lemma 3.1: For an SECiSEC code with L 2 4. 

I for odd L .  

To prove this, we will make use of the following lemma. 
Lemma 3.2: For fixed L 2 4, consider the even function 

ML:R --t R defined by 

b) SEC-DEDISED Codes: Again we want to estimate 
the (it j ) t h  bit in the information array based on the ith row 
and the j th  column. 

codeword; define S, as the syndrome of the ith row. Just as in 
the last section, choose the S,  such it “points” to a single 
error; in addition, if a double error is detected, then set S,  = 
- 1. Define s, as the modulo-two sum of the j th  column; 

= 1. The following algorithm generates our estimate GJ: 

if ( (S,= j )  or ( S , =  - 1 and S,= I ) )G=y  

M ~ ( ~ ) = ~ ( L / ~ ) - w  (:+,, 1) + ~ ( L / Z ) + ~  ( i-x+ 1) . 

Assume that the SEC-DED code is on the rows of the sum Then ML(x) is a convex function on 12 - (L/2), (LIZ) - 
2] with a unique at = O* 

To see why this lemma is important, note that for an (n, k 
= 2‘) linear block code (1 2 21, it takes I + 1 parity bits to 

= 2, this is just the (7, 4) Hamming code; for 1 2 3 it is a 
shortened version of the standard ( 2 / +  ’ - 1, 2/+ I - ( I  + 1) 
- 1) Hamming code. Thus, for I , ,  1, 2 2 

Proof’ See the Appendix. 

thus, an odd number of errors in the j th  column will yield S, provide correction (i.e.> n - k = 1 + 1). For 1 

1 

else G = y .  Q(l1, 12)=Q(lz, ll)=2’1(12+ 1)+2’2(1, + I), 

2) Achievable Code Rates: In this section, we will 
compare the two-error-tolerating binary codes in terms of 
optimal rate for a fixed information array size. 

In our analysis, we assume that the constituent codes are an 
(n,, k,)  code and an (n2, k2) code and that k l  = 2‘1 and k2 = 
2/2 for integer values I , ,  12 2 0. Thus, there are 2L bits in the 
information array, where L = I1 + 12. 

We will analyze both SEC/SEC and SEC-DED/SED codes; 
define Q( l I ,  12) to be the number of redundant cells in an (n l ,  
k , ,  n2, kz) two-error-tolerating linear sum code when k ,  = 2’1 
and k2 = 2/2. Similarly define R( l I ,  12) to be the rate of such a 
code; thus, 

Finally, define R * ( L )  to be the highest rate for an ( n l ,  k , ,  
n2, k2) two-error-tolerating linear sum code when k l  = 2’1, kz  
= 2/2, and L = 1, + l2 is fixed, i.e.. 

R*(L) = max{R(I1, 1 2 )  : / l+ l*=L}.  

a) SEC/SEC Codes: First consider the case where both 
the row code and the column code are SEC binary Hamming 
codes. It can be shown that for L 2 4, the optimal rate is 
achieved by making the information array as square as 
possible. We state this more precisely in the following lemma. 

and so for L 2 4 

Q(i, L - i ) = M L  ($i) for i = 2 ,  3, L - 2 .  

Lemma 3.2 implies that for even L 2 4, 

and for odd L 2 5 ,  

To find Q(0, L)  and Q(l ,  L - l), we note that the relevant 
codes are the (3, 1) repetition code and the ( 5 ,  2) shortened 
Hamming code. Thus, for L 2 3, Q(0, L )  = 2 L + 1  + L + 1 
and Q(1, L - 1) = 3(2L-l) + 2L; both of these are greater 
than ML(O) for L even, L 2 4,  and both are greater than 
M ~ ( 1 / 2 )  for L odd, L 2 5. Thus, Lemma 3.1 is proven. 

b) SEC-DED/SED Codes: It is not as simple to 
maximize the rate of an SEC-DEDISED code for a fixed 
information array size 2 L  as it was for the SEC/SEC code. 
Since the two constituent codes are of a different type, one 
might suspect that the information array must be skewed in 
some way to maximize the code rate. This is in fact the case, 
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and the precise skewing needed is given in the following It only remains to show that we can achieve no better rates 
lemma. by letting I I  = 0 or lI = 1 .  For lI = 0, the SEC-DED code is 

Lemma 3.3: Fix L 2 2 and define m = m ( L )  to be the a ( 4 , l )  repetition code; thus, Q(0, L )  = 3(2L)  + 1 .  For ll = 
nonnegative integer satisfying 2 m  - m < L < 2 m - 1  - (m - 1 ,  the SEC-DED code is a (6 ,  2 )  shortened, extended 
1 ) .  Then Hamming code, and so Q(1, L - 1 )  = 2 L + 1  + 2.  Both of 

these are larger than Q(l:, I,*) for L 2 2;  thus, R * ( L ) =  R( lT ,  I , * ) ,  
Q ( I T ,  I , * )=  min Q ( l l ,  L - l I )  

O < l , < L  where 
L + m  

I:= 

and 

Thus, 
? I  

To prove Lemma 3.3,  let us first restrict ourselves to the 
case lI 2 2 .  Since it requires ll + 2 parity bits to provide 
single-error correction and double-error detection to 2'1 bits 
when lI 2 2, it is easy to see that 

Q(l l ,  12)=2'1 +2'2(11 + 2)  for lI 2 2.  

Taking this cue, define for L 2 2 a function NL:R + R 
thusly 

N , ( ~ ) = 2 " + 2 ~ - " ( ~ + 2 ) .  

To prove Lemma 3 . 3 ,  it would be nice to show that NL(x)  is 
convex U on the interval [2 ,  L ]  and that a unique minimum 
occurs in a small neighborhood around x = ( L  + m ) / 2 .  
However, since we are really only interested in integer values 
of x ,  it is sufficient to prove the following easily proven 
weaker condition. 

Lemma 3.4: The function N L ( x )  defined above satisfies the 
following inequalities: 

NL(x)  < N L ( x -  1 )  for x E 3 ,  - [ L : m ]  

and so Lemma 3 . 3  is proven. 
One final word should be made about the SEC-DED/SED 

configurations which achieve R*(L). Lemma 3 .3  tells us that 
for L 2 2 ,  a ( 2 / ;  + I;" + 2, 2 / ; ,  2/2* + 1, 2/2*) code attains 
the best rate possible of any SEC-DED/SED code with 2L 
information bits. However, it does not say that this configura- 
tion is the only one which achieves this rate. A careful reading 
of the proof of Lemma 3.4 indicates that this configuration is 
in fact uniquely optimal except when L is of the form 2m - m 
for integer m; in this case, both (l:, I,*) and (l? - 1, 1; + 1) 
achieve R * ( L ) .  For instance, in the case L = 12( = 24 - 4) 
the best rate can be attained with either an (n,  = 266, kl = 
256, n2 = 17, k2 = 16) SEC-DED/SED code or an (nl = 

137, kl = 128, n2 = 3 3 ,  k2 = 32) SEC-DED/SED code. 

C.  Triple-Error- Tolerating Binary LSC 's 
Finally, let us consider an LSC constructed from two binary 

single-error-correcting: double-error-detecting (SEC-DED) 
extended Hamming codes, each with a minimum distance of 
four. Such a sum code has d, = 7 and thus is capable of 
tolerating three errors, we will refer to such a code as an SEC- 
DEDISEC-DED binary linear sum code. 

We begin our analysis by determining which rates can be 
achieved for fixed information array size 2 L .  In fact, in this 
respect, our analysis for SEC-DED/SEC-DED binary codes 
is essentially identical to our analysis of SEWSEC codes in 
Section 111-B-2-a. By identical arguments we claim that the 
maximum achievable rates are attained by letting the informa- 
tion array be as square as possible; that is, if we let R ( I I ,  l*) be 
the rate of an (n , ,  k l ,  n2,  k2) binary SED-DED/SEC-DED 
code with kl  = 2'1 and k2 = 2'2, then the following lemma 
holds. 

Lemma 3.5: For L 2 4, 

Lemma 3.4 tells us that 

min Q ( l 1 ,  L - l l )  
Z<I,<L 

for L + m even 

= ~ i ~ ~ ~ ~ ) T ,  l,*), Q(lT + 1 ,  1; - l ) }  for i + m odd. 

f 3 L  

= {  3 L  

Simple calculations show that Q(l;", I,*) < Q(1: + 1 ,  1: - 
1 ) ;  thus, 

Now consider the decoding of an element in the information 
array of an SEC-DED/SEC-DED codeword. Assume that w Q(I;", I,*)= Z < / l < L  min Q ( l l ,  L - l l ) .  
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Fig. 2.  Layout of a typical RAM using linear sum code 

was written into the ( i ,  j ) t h  position in the information array 
and that a possibly corrupted version y is read back. Let S, and 
S, be, respectively, the syndromes for the ith row and the j th  
column; just as in Section 111-B-1-a, assume that the syn- 
dromes “point” to a single error and that a double error is 
indicated by a syndrome of - 1. Let ti, be our estimate of w; 
then execution of the following algorithm will result in ti, = w 
provided there is at most three errors in ith row and the j th  
column: 

if ((S,=O) or (S,=O))$=y 

else if ( (S,= j )  or (S,=i) or (S,=S,= l))ti,=y I 

else ti,= y .  

IV. IMPLEMENTATION AND COMPLEXITY OF BINARY SUM CODES 

In this section, we investigate the practical aspects of 
implementing on-chip binary sum code error correction. We 
describe the organization and structure of sum-coded RAM’S 
and assess the complexity of implementing different row/ 
column codes in terms of the number of gates needed. 

A .  Implementing Sum Codes 
Fig. 2 shows a possible organization of a one-bit-wide 

dynamic RAM chip encoded with a linear sum code. The chip 
consists of a rectangular array of one bit memory cells, sense 
amplifiers, refresh circuits, selector and addressing logic, as 
well as the ECC circuitry. 

The memory cells are organized as m N-bit word lines, 
each of which uses K = klk2 cells for data and N - K cells 
for parity. The total user capacity of the RAM is therefore mK 
bits, which implies log2 m + log2 K address bits. These 
address bits are decoded by a row encoder and a column 
encoder. 

The row decoder uses the log2 m row address bits to enable 
exactly one of the m N-bit word lines. Each read and refresh 
cycle operates in such a way that all the cells in one complete 
word line (and hence one complete sum code block) are read 
out to the sense amps simultaneously. 

The column decoder then uses the log, K column address 

bits to specify the particular bit being addressed. In doing so, it 
breaks up these log2 K bits into a group of log2 k l  bits and a 
group of log, k2 bits. The log2 kl bits specify a row in the sum 
codeword and the log2 k2 bits specify a column. The 
intersection of these two addresses specifies the one data cell 
in the word line that is being addressed, and the data selector/ 
multiplexer selects and outputs this bit to the ECC unit. 

The remaining major functional unit in the coded RAM is 
the I/-Hcode selector block. This unit outputs the vertical and 
horizontal component codewords associated with the bit being 
addressed, (i.e., the row codeword addressed by the logz k l  
bits and the column codeword associated with the log2 kz 
address bits). These codewords, together with the addressed 
data bit are fed to the ECC unit which performs any necessary 
correction and outputs the corrected bit to the user. 

The shaded portions in Fig. 2 show the areas that represent 
the ECC overhead. There are essentially only three areas of 
interest. These are the extra memory cells needed to store the 
parity checks, the selector block needed to “pull out” the 
vertical and horizontal component codes of the sum code, and 
the ECC circuits themselves. It should be particularly noted 
that no extra column or row decoders are needed, compared to 
an uncoded memory. The overhead in terms of parity cells has 
already been determined, and is given by the redundancy of 
the overall sum code. In the sections that follow, we will 
estimate the complexity of the two remaining areas. 

B. Selector Block Complexity 
Fig. 3 models the circuitry necessary to extract the 

component horizontal (row) and vertical (column) codewords 
of the sum code, in terms of multiplexers. It can be seen that 
nl k2-input multiplexers are required to extract the horizontal 
codeword in which the addressed data bit lies, and n2 k,-input 
multiplexers are required to extract the vertical codeword. In 
practice, a multiplexer is implemented very simply by a set of 
two-input AND gates (one for each MUX input) with their 
outputs wire-oeed together. One input of the AND gate is the 
data input and the other is the controlling input. This input is 
normally driven via a decoder from the multiplexer select or 
address lines. However, in our case, the select lines are simply 
the RAM column address lines, and these have already been 
decoded into 1-out-of-kl and 1-out-of-kz by the column 
decoders shown in Fig. 2. The selector block is, therefore, 
simply a collection of two input AND gates which together with 
the column decoder lines acts as the required multiplexers. It 
therefore follows that a total of nlk2 + n2kl two-input AND 

gates are required to extract the horizontal and vertical 
component codewords. It also follows that the data selector 
multiplexer requires klk2 = K AND gates which are needed in 
the uncoded case as well. We can, therefore, ignore this 
complexity component when comparing different coding 
schemes for a given value of K.  

C. ECC Complexity 

I )  Syndrome Complexity: The first task the ECC hardware 
must perform is to compute the horizontal and vertical 
component code syndromes. This is illustrated in Fig. 4. Each 
syndrome bit is the XOR sum of various of the selected 
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In this case, each syndrome bit is the XOR sum of three data 
bits and one parity bit, indicating that three four-input gates 
are needed. This in turn implies that each syndrome bit can be 
computed with three two-input gates. In general, the number 
of two-input gates needed to compute the syndrome of an (n, 

n 1 bits n 2  bits 

1 1 1 1 1 1 k )  block code is given by 
s i  s2 ' n l - k l  s 1  s 2  'n , -k ,  

( ) I  Vertical Syndrome Vemcal Syndrome IIHII-(n-k) 
Fig. 4. Syndrome complexity. where IlHll is the number of 1's in the parity check matrix of 

codeword data bits and the corresponding codeword parity bit. 
The number of multiinput XOR gates needed is therefore equal 
to the the number of parity bits in the horizontal code plus the 
number of checks in the vertical code. In addition, the 
horizontal XOR gates have potentially k ,  + 1 inputs and the 
vertical XOR'S have k2 + 1 inputs. However, in practice, the 
multiinput XOR'S are made up from two-input XOR'S, and so an 
x input XOR requires x - 1 two-input XOR gates to implement. 
The actual number of inputs needed on each XOR depends on 
the number of data bits involved in the particular syndrome bit 
computation. This can be found by inspecting the parity check 
matrix H of the particular code. For example, the H matrix of 
the (7, 4) SEC Hamming code is given by 

1 0 0  0 1 1 1  

0 0 1  1 1 0 1  
0 1 0  1 0  1 1 1 ,  

the code. The total number of two-input XOR'S needed to 
implement syndrome computation for an (n,, kZ,  n2 ,  kz)  linear 
sum code is therefore 

where H I  and H2 are the parity check matrices for the 
constituent codes. 

The three block codes which we used as constituent codes 
for the class of sum codes discussed in Section I11 are the SED, 
SEC, and SEC-DED codes; Hsiao [ 1 I] has demonstrated a 
procedure for constructing such codes such that the number of 
1's in the parity check matrices is minimized. Using this 
procedure, one can arrive at the following values: 
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double error detect 

Fig. 5 .  ECC complexity. 

where x is determined by the inequalities E;:; ( “ i k )  < n < 
E:=] (“Tk).  

where y is determined by the inequalities ( ;,-,”,) < n < 
2) Correction Decoder Complexity: We now consider the 

complexity of the circuits needed to actually correct the 
addressed bit. 

The sum code decoding procedure for different codes has a 
common requirement. That is, for both component codes, we 
need to know if the component syndrome indicates an error in 
the addressed bit, or alternatively if the syndrome is zero. 
This information is then combined with similar information 
from the other component code, to produce a correction output 
signal which will correct the addressed bit via an XOR gate. The 
complexity of the ECC decoder lies mainly in the detection 
circuit, and so we can ignore the logic that combines the two 
component codes. Consider Fig. 5. This shows a decoder 
circuit for a 3-bit syndrome that provides a logic one output if 
the syndrome indicates an error in a particular bit AND that bit 
is being addressed. Also, an indication of the all-zero 
syndrome is output. The lookup table that converts syndromes 
into error locations is essentially being stored in the intercon- 
nections to the AND gates. In the case of the SEC-DED code, 
an indication of a syndrome corresponding to a double error is 
also needed. 

In the case of the SED code, this whole circuit reduces to a 
piece of wire, as the single-bit syndrome provides all the 
information needed. For SEC block codes, however, k + l(n 
- k + 1)-input AND gates are needed; one more gate is needed 
to double-error detection. Therefore, in terms of two-input 
gates, SED requires zero, SEC requires (k  + l ) ( n  - k ) ,  and 
SEC-DED requires (k  + 2)(n - k ) .  

(;;:I). 

3) Encoder Complexity: Finally, consider the circuits 
needed to perform a write operation; this part of the RAM 
must not only write data into memory, but it must also alter the 
row and column parities so that the word line remains a valid 
sum codeword. We assume that all write cycles-and indeed 
all read cycles that reveal an error in the addressed bit-are in 
fact read-modify-write cycles. This is done so that errors in 
memory are cleaned out as they are found and not allowed to 
accumulate. 

As mentioned above, the write operation consists of two 
parts-writing the new data into the addressed location, and 
making any necessary changes to the parities. This can be 
achieved as follows. First, the new data bit is compared to the 
corrected stored data bit. If they are the same, then no panty 
changes are necessary. If they are different, then all parity bits 
that check that particular location must be complemented. 

Fig. 6 shows such an encoder for one constituent code. A 
set of n - k OR gates takes its input from the already 
implemented k select lines. The interconnection matrix is 
specified by which data bits are included in which parity 
checksums; that is, each OR gate is associated with a parity bit, 
and the output of an OR gate goes high whenever the associated 
parity bit is affected by the addressed bit. If the new data are 
different from the old data, then n - k AND gates and n - k 
XOR gates selectively flip those parity bits that are specified by 
the outputs of the OR gates. 

Thus, to implement the encoder described here requires (n,  
- kl + n2 - k2) two-input AND gates, the same number of 
two-input XOR gates, and [llHIII + llH211 - 2(nl - k ~ )  - 2(n2 
- kz)] two-input OR gates. 

One more minor point deserves mention. The encoding 
circuit described here is for writing new data onto a RAM 
chip. The only other time any kind of encoding process is 
required is during a refresh cycle. During refresh, all of the 
data in the codeword are rewritten, “scrubbing” the data and 
making it easy to simply recompute all of the parities. 

D. Overall Complexity 
Having assessed the complexity of the three main overhead 

areas needed for sum code ECC in terms of AND gates and XOR 

gates, we can combined these into a single measure. In CMOS 
technology, the needed AND gates and OR gates can be 
implemented with four transistors, and the XOR gates with six. 
Expressing the complexity in terms of transistors then allows 
us to compare the various coding schemes with a single 
measure. 

V. NUMERICAL RESULTS 
In Fig. 7 we have graphed R * ( L )  for the four codes studied 

in Section 111. In addition, we have listed in Table I the 
complexity data for the optimal (i.e., best rate) configurations 
of each of these codes for several values of L .  

Several conclusions can be drawn from these data; among 
them are the following. 

Once the decision is made to place error control on the 
chip, relatively little is paid in terms of complexity to increase 
the power of the code; the difference in the number of 
transistors needed to implement the single-error-tolerating 
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Fig. 7. Rates for a class of ECC’s. 

code and the double-error-tolerating codes is modest, and the 
difference between the two- and three-error-tolerating codes is 
essentially nonexistent. 

There is a penalty in terms of code rate which must be 
paid for increasing the power of the on-chip code. However, 
relatively high rates can be achieved with the multiple-error- 
tolerating codes for reasonable values of L ;  for instance, by 
placing 256 data bits on each word line, a two-error-tolerating 
SEC-DED/SED code can be implemented at a rate of 0.744. 
This rate can be considered acceptable, since there is currently 
a commercial RAM chip on the market that employs a 
shortened (12, 8) Hamming code with a rate of 0.667 [8]. The 
increase in rate is, or course, directly attributable to the 
increased blocklength of the SEC-DEDISED code, and it 
demonstrates one of the key tenets of information theory-that 
it is “better” (in terms of both rate and performance) to build 
long codewords with strong error correcting capabilities than 
to build shorter, weaker codewords. 

In comparing the two double-error-tolerating codes, the 
SEC-DED/SED configuration seems to be preferable to the 
SEC/SEC implementation. The optimal rates for the SEC- 
DED/SED configurations range from 10 to 20 percent better 
than those of the SEC/SEC codes over the most reasonable 
values of L (i.e., 8 < L < 12). The complexity of 
implementing these codes is essentially the same whether one 
chooses SEC-DED/SED or SEC/SEC. 

VI. SUMMARY 
In this paper, the following points were made. 
1) A class of error control codes called linear sum codes 

was defined; these codes are a generalization of the bidirec- 
tional parity check code implemented by Nippon Telephone 
and Telegraph, and their intended use is for error control on 
the word lines of random access memories. They are similar to 
product codes in that their codewords are two-dimensional 
arrays constructed from two constituent codes. They differ 
from product codes by a constraint put on the decoding of 
LSC’s; this constraint involves taking advantage of the 
addressing scheme used on RAM’S to minimize the overhead 
of codeword selection. 

2) One particularly simple class of LSC’s-those which can 
be constructed from parity checks, Hamming codes, and 
extended Hamming codes-were examined in detail. It was 
shown that codes capable of tolerating one, two, and three 
errors can be found in this class of codes. Furthermore, simple 
decoding algorithms were given, and the best achievable code 
rates were found for these codes. 

3) The complexity of actually implementing these codes 
was examined; this was given in terms of the number of gates 
required to perform the different selection and computation 
functions required for error correction. It was shown how the 
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TABLE I 
RATES AND COMPLEXITIES OF SEVERAL CODES FOR VARYING VALUES 

OF L 

Note: Since L = 12 is of the form 2”’ - rn, there are two SEC-DED/SED configurations which 
achieve R*(L)  (see Section In-B-2-b); we have included the configuration which minimizes the 
complexity. 

complexity varies with the dimensions of the codewords and 
with the parity check matrices of the constituent codes. 

4) Finally, several numerical examples were given for 
specific codes; this showed that multiple-error-correcting 
LSC’s could be implemented at rates favorable to those of 
single-error-correcting codes already used in some RAM 
designs, and that the complexity penalty paid for doing so is 
not significant. 

APPENDIX 

Proof of Lemma 2.1: Let C:, 0 < j < k l ,  represent a 
partition of the row code by the number of nonzero symbols in 
the information symbols; that is, C: is a set containing all those 
codewords in the row code with exactly j nonzero symbols in 
the information segment. Similarly, let C;, 0 < j < k2, be a 
partition of the column code. Finally, let p l ( j )  and p2( j ) be 
the Hamming weight of the ‘‘lightest’’ codewords in Cj and 
C;, respectively. 

First, for arbitrary row and column codes, consider any 
nonzero codeword c .  We argue that the Hamming weight \ I C  11 
is at least df,,,, + d;,, - 1. Let ( i ,  j ) be the coordinates of a 
nonzero element in the information array of c ,  and let m and n 
be, respectively, the number of nonzero elements in the ith 
row and the j th  column of the information array. Then the 
weight of this codeword llcll is no less than p l ( m )  + p2(n)  - 
1 .  Thus, from the definition of df,,, and d;,,, 

described in Lemma 2.1 ; this is equivalent to assuming that 
pI(l) = df,,,  and p2(2) = di,,,. Choose c1 and c2 to be 
minimum weight codewords from the row code and column 
code, respectively, such that cI and c2 each contain only a 
single nonzero symbol in their information parts. That is, 

and 

Furthermore, because the codes are linear, we can assume that 
both of these nonzero information symbols are the symbol 
“1.” 

Let j and i be, respectively, the location of the nonzero 
entries in the information parts of c ,  and c2. Then by placing a 
single “1” at the ( i ,  j ) t h  coordinate and zeros everywhere else 
in the information array, exactly dkin - 1 nonzero entries are 
induced in the parities of the ith row and d’,,, - 1 nonzero 
entries are induced in the parities of the j th  column. All other 
elements in the codeword are zero. Thus, the Hamming weight 
of this codeword is dkin + d;,, - 1, and so 

d,,, < dkin+ d i i n -  1 .  

Thus, equality holds. QED 
Proof of Lemma 3.2: From simple calculus, 

2 - L ’ 2 M L ( ~ ) = 2 - X  Since this is true for all nonzero c ,  

dmin = min 11 C I I  2 df , , ,  + d i , ,  - 1. 
C Z O  

+ 2 “  [In 2 ( : - - x +  1 )  - 1 1  
Now, assume the constituents codes have the property 
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and 

2 - L / 2 M ; ( ~ ) = l n  2 2-”  - + x + l  In 2 - 2  K: ) 1 
2 In 2 ( 2 ” + 2 - ” ) ( 3  In 2 - 2 )  

for x E [2  - ( L / 2 ) ,  ( L / 2 )  - 21. Thus, M; ( x )  is positive 
and so ML ( x )  is convex U on [2  - ( L / 2 ) ,  ( L / 2 )  - 21. To see 
that there is a unique minimum at x = 0, we just note that 

Proof of Lemma 3.4: Define j = L - (2” - m), so that 
I, = 2” - m - j and 0 < j < 2” - 2.  Make the change of 
variable t = 2”-’  + ( j / 2 )  - x; then we can restate the 
lemma as follows: Define P L : R  ---* R as 

ML(0) = 0. QED 

ThenPL(t  - 1 )  < PL(t) for t E [m - 2“--’ - ( j / 2 )  + 1 ,  
01 and PL(t  + 1) 2 PL(t)  f o r t  E [0, 2 ” - ’  + ( j / 2 )  - 31. 

First take t E [0, 2“-’  + ( j / 2 )  - 31. Then 

2 - ( zm - + ( j 1 2 ) )  [ PL(f + 1 )  - PL (t)] 

2 0  

i fandonlyifg( t )  2 1, whereg(t) = 2 2 r - m + 1 ( 2 m - 1  + ( j / 2 )  
- t ) .  Now, g(0) = 1 + ( j / 2 ” )  2 1 .  (Note: Equality holds 
here if and only if j = 0; this will mean that the optimal 
configuration described in the lemma is unique except when j 
= 0, or, equivalently, when L is of the form 2” - m.) 
Furthermore, 

< O  

if and only if h ( t )  < 1, where h( t )  = 2 2 f - m - 1 ( 2 m - 1  + ( j / 2 )  
- t + 1 ) .  But 

1 j  1 
h (0) = - + ~ + - 4 2m+2 2m+l 

becausej < 2” - 2. Thus, h(0) < 1 .  Furthermore, 

> / 221-m-1 ( 2 “ + j + ( 2  In 2 - 1 ) )  

> 0. 

for t < 0 

Thus, h ( t )  is monotone increasing on [ m  - 2”-’  - ( j / 2 )  + 

- 1 )  f o r t  E [m - 2“-’  - ( j / 2 )  + 1 ,  01. QED 
1 ,0 ]  and so h ( t )  < 1 on that interval; therefore, P L ( t )  < P L ( ~  

131 

141 

r71 

181 

[91 

j < 22/-m+l (6 In 2 -  1 )  for t < 2 ’ ” - ’ + - - 3  
2 \ 

1111 
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