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Abstract 

Let X,,, denote the Hermitian curve xm+’ = ym + y over the field F,,,z. Let Q be the single 
point at infinity, and let D be the sum of the other rn3 points of X,,, rational over F,,,z, each 
with multiplicity 1. X,,, has a cyclic group of automorphisms of order m2 - 1, which induces 
automorphisms of each of the the one-point algebraic geometric Goppa codes &(D,uQ) and 
their duals. As a result, these codes have the structure of modules over the ring F,[t], and this 
structure can be used to good effect in both encoding and decoding. In this paper we examine 
the algebraic structure of these modules by means of the theory of Groebner bases. We introduce 
a roof diagram for each of these codes (analogous to the set of roots for a cyclic code of length 
q - 1 over Fq), and show how the root diagram may be determined combinatorially from a. 
We also give a specialized algorithm for computing Groebner bases, adapted to these particular 
modules. This algorithm has a much lower complexity than general Groebner basis algorithms, 
and has been successfully implemented in the Maple computer algebra system. This permits the 
computation of Groebner bases and the construction of compact systematic encoders for some 
quite large codes (e.g. codes such as C~(D,4010Q) on the curve X16, with parameters n = 4096, 
k = 3891). @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 94B27, 13P99 

1. Introduction 

Let X,,, denote the Hermitian curve x”+’ = ym + y over the field F,z. The projective 

closure of X, is a smooth curve of degree m + 1, hence of genus g = m(m - I)/2 
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in P’. X,,, is special in many ways. For each x E F,,,z, there are m distinct solutions 

y E Fm2 of the equation ym + y = x W’ Together with the single point at infinity, this 

gives m3 + 1 points of X, rational over the field F,z. By the Weil bound (see, e.g. [4, 

81) 

IbW,)I 5 1 + q + 2gfi 

(valid for any curve defined over F4) we see that X, has the maximum possible number 

of points rational over Fmz for a curve of genus g = m(m - 1)/2. Furthermore, X, has 

a very large group of automorphisms. Indeed, by [6], 

IAut(X,,,)I = m3(m3 + l)(m2 - 1). 

For us, a key role will be played by the cyclic subgroup of Aut(X,) generated by 

1 XHC?X 
0: m+l 

Y++N Y 

It is easy to see that CJ fixes the point Q at infinity and permutes the other m3 rational 

points of X,,, in m + 2 orbits (see Lemma 3.1 below). 

The simple form of X,, the large number of F,z-rational points, and the large 

automorphism group of X, are all advantageous when we apply the general construction 

of Goppa to produce codes starting from X,. Recall that if X is a smooth curve defined 

over the finite field Fq, and D = Cy=, Pi and G are F,-rational effective divisors on 

X with disjoint supports, then the Goppa code CL(D, G) is defined to be 

GL(D, G) = {(f(pi ), . . . , fV'n)> E F;lf EL(G)). 

(As usual we write L(G) for the vector space of rational functions on X defined over 

F,, whose divisor of poles is bounded by G.) 

To obtain long codes from the Hermitian curve X,, we will always take D to be 

the sum of the m3 affine Fm2-rational points of X,,,, and G = uQ, for some a 2 1. The 

resulting one-point Hermitian codes have been studied extensively, for example in [9, 7, 

51. The parameters of the code CL(D,UQ) are 12 = m3, k = dim L(aQ)-dim L(uQ-D) 

(for a < m3, the second term here is zero), and the exact minimum distance d has 

been determined in all cases (see [8, 121). 

Encoding and decoding algorithms for Hermitian codes have been considered in [5]. 

For instance, for encoding, it is easy in principle to construct generator matrices for 

the codes CL(D,UQ), because the vector space L(uQ) is spanned by the collection of 

monomial functions 

{x’f I mz+s(m+l)<u}. 

If systematic encoders are desired for long Hermitian codes, however, this approach 

leads to some impractically large matrix computations. In [3], we showed that the extra 

symmetries of the Hermitian codes induced by the automorphism g above can be used 

to reduce the amount of information needed to specify the code and to describe a 
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systematic encoder. Namely, each code CL(D,UQ) has the structure of a module over 

the ring F4[t] (in which multiplication by t is the same as applying the automorphism 

of the code induced by g). As a result, the theory of Groebner bases for modules (see, 

e.g. [l], or Section 2 of [3] and Section 2 of the present paper for the portions of 

that theory that we will need) can be applied. For Hermitian codes, the results of [3] 

imply that any code CL(D,UQ) can be completely specified by giving a Groebner basis 

whose elements are in l-l correspondence with the orbits of the points of D under the 

action of the group of automorphisms generated by 6. This means a collection of m + 2 

module elements, each of which is an (m + 2)-tuple of polynomials of degree no more 

than m* - 1. If we use the unique reduced Groebner basis for the module (relative to 

a fixed term ordering), then each of these module elements contains at most n - k + 1 

non-zero terms. 

A general algorithm, originally due to Buchberger, is known for computing Groebner 

bases (see, e.g. [2] for the case of ideals, [l] for the case of modules). Moreover, this 

algorithm can be simplified considerably for the case of modules over the polynomial 

ring in one variable. However, even the simplified algorithm is still impractical on 

modules such as the code C~(D,4010Q) on the curve X16, with parameters n = 4096, 

k = 3891; the size of the input and the amount of calculation needed to compute 

several thousand GCDs of polynomials of degree m2 - 1 = 255 with coefficients in 

F256 is prohibitive. Hence we are led to ask whether the special structure of Hermitian 

codes can be exploited to yield alternative methods adapted to this situation. 

The main theme of the present paper is that the symmetries of the Hermitian curves 

can be harnessed to do precisely this as well. In Section 2, we will show that to 

any code over Fq with an automorphism of order q - 1, we can associate a root 

diagram describing the shape of the Groebner basis for the POT term order (see [3, 

Eq. (2.2.1)]). In a sense, this root diagram is a direct generalization of the set of roots 

of the generator of a cyclic code of blocklength q - 1 over Fq (see, for example, [ 10, 

Chapter 61). Since our construction applies to any code with such an automorphism, we 

believe that the developments here may be valuable in studying other codes as well. 

In Section 3 we specialize to the case of Hermitian curves and show how the structure 

of the rational points on X,,, allows one to determine this root diagram for the code 

CL(D,UQ) in a direct, purely combinatorial fashion, given the integer a. In particular, 

the actual Groebner basis for the code need not be computed to determine the root 

diagram. 

In Section 4 we show how, given the root diagram for a Hermitian code CL(D,UQ), 
the POT Groebner basis may be determined without applying the general Buchberger 

algorithm. The idea is that the elements of L(aQ) which evaluate to give the coeffi- 

cients of the Groebner basis elements may be determined as the solution of a sequence 

of interpolation problems on the (c)-orbits in the support of D. Using a simple variant 

of Lagrange Interpolation, we can produce the Groebner basis elements in a very direct 

way by evaluating suitably constructed elements of L(aQ). Our algorithms have been 

successfully implemented in the Maple computer algebra system. With them, it is pos- 

sible, for example, to construct compact systematic encoders for some very large codes. 
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The following Section 5 is devoted to a study of the relationship between the root 

diagram of a CL(D,@) code and that of its dual. Once again we obtain a nice gen- 

eralization of known facts for cyclic codes of length q - 1. 

The final section Section 6 is devoted to a detailed analysis of the code CL(D, 19Q) 

from the Hermitian curve over Fg, an example which illustrates all of the results from 

the previous sections. The reader may wish to refer to this section as the general results 

are introduced. 

After this article was completed, we learned of [ 1 l] which treats the Hermitian codes 

we study from a somewhat different point of view (without using Groebner bases), but 

which derives a similar sort of algebraic structure for these codes. 

2. Preliminaries 

Let C C Ff be a linear code over F, which has a non-trivial automorphism CJ of 

order q - 1. The cyclic codes of block length q - 1 are perhaps the most familiar 

examples of this type. Many interesting algebraic geometric Goppa codes, including 

the one point Hermitian codes CL(D,UQ) and their dual codes Ca(D,aQ), also have 

such automorphisms. 

2.1. Example. Let X, be the Hermitian curve over Fm2, defined by the equation 

x m+i = Ym + Y. 

Let Q be the single point at infinity of this curve, and let D be the sum of the other 

m3 F,z-rational points, each with coefficient 1. Writing c( for a generator of F$, as 

in [3], we will consider the automorphism 

I x+-+0x 
a: m+l 

Y-a Y 

of X,,,. Note that a has order m2 - 1. Since a fixes the divisors D and G = aQ, a 

induces an automorphism of each of the codes CL(D,UQ) constructed from X,,,. 

It is easy to see that if C is a code as above, then the dual code C’ also has an 

automorphism induced by a. 

As is well-known (see, for instance, [lo, Chapter 6]), a cyclic code of block length 

q - 1 can be viewed as an ideal I in the ring 

R = F&]/(tq-’ - 1). 

(R may be thought of as the group ring of the cyclic group generated by a.) Moreover 

the ideal I is principal, generated by a divisor g(t) of the polynomial tq-’ - 1. Hence 

we may associate to the cyclic code the set of roots of the generator polynomial, a 

subset of F:. In this section we will introduce a root diagram for any linear code with 

an automorphism of order q - 1 which will play a similar role. 
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In general, e.g. if the block length is greater than q - 1, the enties of the codewords 

of one of our codes C will be cyclically permuted in several blocks by 0. We will 

use the following algebraic structure possessed by the codes C (and Cl). Decompose 

the entries of words (or equivalently, the standard basis vectors vi in Fi) into disjoint 

(a)-orbits 

0, u . . . u 0,. 

Picking any one element vi,0 from each orbit as representative, we may relabel the 

basis vectors in the following way 

Vi,j = ~j(Vi,Oh 

and relabel the entries of each word correspondingly. If c E C, we will write ci,j = 

coefficient Of Vi,j in C. 

Using this we may write the codewords as r-tuples of polynomials (hi(t), . . . , h,(t)), 

where 

lO,l-1 
hi(t) = C Ci,jtj. 

j=O 

We have thus represented our codes as vector subspaces of 

($Fq[t]/(tlo’l - 1) 
i=l 

As in [3, Proposition (2.1.4)], because C and CL are closed under the action of rs, 

the collections of r-tuples of polynomials are closed under multiplication by t. In other 

words, this construction gives C and CL the structure of modules over the ring F4[t]. 

(Since crq-’ = 1, C m ay also be viewed as a module over the finite-dimensional ring 

R.) Furthermore, we have an obvious surjection 

Fq[tlr L CjFqPl/(t’“” - I), 

so to each code C as above, we can associate the corresponding submodule -d = 

x-‘(C) of the free module Fq[tlr. 

We will use the POT monomial ordering in F,[t] with the standard basis vectors 

ei ordered: 

el > e2 > ... > e,. 

That is, 

PC?i >poT t’C!j 

if i -c j, or if i = j and u > u. There is a unique reduced Groebner basis ?9 for the 

module C with respect to this ordering. By the properties of the POT ordering (see 
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e.g. [3, Eq. (2.2.4)]), 9 = {g(‘),. .,g(‘)} will have the form 

g(l) = (g!l),gy), . . . ,g!l)), 

g(2) = (O,gf), . . . ,g;*+, 

(2) 

g(‘) = (030 ,...,o g”‘) > r 2 

Most important for us will be the diagonaZ components g:“(t), i = 1,. . . ,Y. These 

polynomials have the following properties. 

2.2. Proposition. For each i, let di be the degree of the diagonal component g!“(t). 

Then the equation g!“(t) = 0 has di distinct roots in Fz. 

Proof. This follows since for each i, qi = (t lojl - 1)ei is an element of the module c. 

Moreover IOil is a factor of q - 1. On division by 3, qi must reduce to zero. Hence, 

we have 

g!‘)(t) 1 tlO,l - 1 1 tq-’ - 1. I 

Hence, gj”(t) has distinct roots in F:. El 

The collections of roots of the g:‘)(t), i = 1, . , Y, may be conveniently represented 

by a root diagram, in which each row corresponds to one element of the Groebner 

basis (hence to one of the orbits), the boxes on the ith row correspond to the roots of 

tlOrl - 1 = 0, and we mark the roots of g!“(t) = 0 on the ith row with an X. For an 

example, we refer the reader to (10) in Section 6 of this paper where the root diagram 

for the code CL(D, 19Q) from the Hermitian curve over Fg is examined in detail. We 

conclude this section with the following important observation. 

2.3. Proposition. The dimension of the code C is equal to the number of empty boxes 
in the POT root diagram. 

Proof. By a general property of Groebner bases, (see [3, Eq. (2.3. l)]) there is an 

F,-basis for C in one-to-one correspondence with the non-standard monomials in the 

module c, that is, terms teei appearing as leading terms of some element of the module, 

whose exponents satisfy e 5 lOi 1 - 1. If there are ni empty boxes on row i of the 

root diagram, then there are IOil - ni roots, and the leading term of the Groebner basis 

element gi is tlorlpnJei. We obtain ni non-standard monomials containing ei. The result 

follows by summing over i. 0 
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3. Determining the root diagram for a Hermitian code 

In this section, we will show that the root diagram for a Hermitian code can be de- 

termined in a direct, combinatorial fashion, without first computing the POT Groebner 

basis for the module c. Indeed, as we will see later, this fact can be exploited to give 

a very direct specialized algorithm for calculating the Groebner basis of one of these 

modules, which has a much lower complexity than the general Buchberger algorithm. 

The basis for our method is the following collection of facts about the (a)-orbits in 

the affine Fq rational points of X,,,, and about rational functions on X,,,. We begin with 

a general statement about the orbits. 

3.1. Lemma. Under the action of the o in (l), the m3 points of X,,, rational over F, de- 

compose into m+2 orbits, m of length m2 - 1, one of length m- 1, and one of length 1. 

( We will$x notation for the orbits in the following way. The orbits of length m2 - 1, 

in any convenient order, will be denoted by 01,. . . , O,,,, the orbit of length m - 1 will 

be Om+l, and the singleton will be Om+2.) Each of the orbits of length m2 - 1 is the 

complete intersection of X,,, with a reducible algebraic curve of degree m - 1, dejined 

by an equation of the form 

m-2 

_ m-l _ Cle’(m--l) = 0 (3) 

(a union of “horizontal lines”). The same is true for the orbit O,,,+l of length m - 1 

if we assign a multiplicity of m + 1 to each point. The singleton orbit 0,,,+2 (with 

assigned multiplicity m2 - 1 is the complete intersection of X, with the zero set of 

M = y W' In+2 (a non-reduced curve). Moreover, each Mi(y), i = 1,. . .,m + 2, is a 

non-zero constant when restricted to each of the orbits Ok, k # i. 

Proof. First consider the orbits of the m points on the line x = 1. Say Pj,o = (l,cc’~). 

Then ~7j(P~,~) = (~j,c&~+i(~+‘)). F rom the first components, we see that these points 

are distinct and that there are precisely m2 - 1 of them. From the second components, 

since (cl”+l )m-l = 1, th ey are distributed evenly over the m - 1 horizontal lines y = 

CZ’~+~@‘~‘), j = 0,. . . , m - 2. Each of those lines meets X,,, in precisely m + 1 points, 

so the claim follows. The orbit of length m - 1 consists of the the m - 1 affine points 

other than (0,O) on the line x = 0. The horizontal line passing through each of those 

points is the tangent line to the curve there, which intersects X, only at that point, and 

with multiplicity m + 1. 

The fact that Mi(y) is constant on the other orbits is clear from the simplified form 

on the second line of (3). 0 

We will call Mi(y) in (3) the orbit masking function for orbit i, since it vanishes 

identically at the points of that orbit. A somewhat curious property of these functions 
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is that the value of Mi on orbit Oj is equal to the negative of the value of Mj on orbit 

Oi. In other words, the matrix of orbit masking function values is skew-symmetric (or 

symmetric in characteristic 2). This can be seen easily from the simplified form in the 

second line of (3). 

Next, for future reference, we will construct a function which is zero at all but one 

point of Oi. As we will see later, the function Bi,j(x, y) is essentially one of the basis 

polynomials for Lagrange interpolation on Oi. 

3.2. Lemma. Let i < m, and let Pi,j = oj(Pi,o) be the jth point of Oi. Zf i 5 j, the 
function 

m-2 

Bi,j(X, y) = n (y _ ,el+(j+k)(m+l)). fi (x _ aj+k(m-l)) 
k=l k=l 

vanishes at each point of Oi except Pi,j. Similarly, flFl,2 (y-cr"-+l+(k+j)@"+l)) vanishes 

at each point of O,,,+l except Pm+l,j. 

Proof. Since Bi,j contains all of the factors from Mi(y) except y - &‘+j@+‘), Bi,j 
vanishes at all points of Oi, except those on the horizontal line through Pi,j. At each 

of those points except Pi,j, one of the remaining factors vanishes. The idea for the 

orbit O,+i is the same. 0 

Since x has pole order m at Q and y has pole order m + 1 at Q, we see immediately 

that for i 5 m, 

Mi E L((m2 - 1)Q) and Bi,j E L(((m - 2)(m + 1) + m2)Q). (4) 

The pole order of Bm+l,j at Q is (m - 2)(m + 1). 

As a first consequence of these observations, we have the following information 

about the rows of the root diagram for CL(D,~Q). 

3.3. Theorem. Consider the root diagram for the Hermitian code CL(D,~Q). 
(1) Let i < m. Zf a > (i - l)(m2 - l), then the ith row of the root diagram for the 

code is not full, or in other words, there is some /I E Fz which is not a root of the 

ith diagonal component g!“(t) of the reduced POT Groebner basis for C. 
(2)LetiLmagain. Ifa>(i-l)(m2-1)+m2+(m-2)(m+l), then theithrow 

of the root diagram is empty, or in other words, the ith diagonal component g:“(t) 
of the reduced POT Groebner basis is 1. 

(3) Finally, consider the case i = m + 1. The (m + 1)st row of the root diagram is 
notfull ifa>m(m2-1). Ztisemptyifa>m(m2-l)+(m-2)(m+l). 

Proof. Recall that we have represented the elements of CL(D,~Q) as (m + 2)-tuples 

of polynomials 

(ht(t), . . . ,hm+dt)) 
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where 

(O,l-1 
h,(r) = C f(Pi,jYj 

j=O 

for some f E L(aQ). 

(1) Suppose that i < m and a 2 (i- l)( m2 - 1). Then by (5), the following product 

of orbit masking functions is an element of L(aQ): 

Evaluating f to form the coefficients of a module element, we see that CL(D,UQ) will 

contain an element of the form 

(0,. . . 309 h(t),..., bn+2(t)) 

with i - 1 zero leading components. By the last statement in Lemma 3.1, the ith 

component h,(t) has the form 

hi(t) = C( 1 + t + t2 + ’ ’ ’ + Pp2) 

for some c E F:. The roots of hi(t) are all t # 1 in F:. The ith diagonal component 

from the POT Groebner basis for the module must divide this hi(t), so we see that 

in row i of the root diagram at least one root (t = 1) has been omitted. 

(2) Similarly, by (4), if i 5 m and a 2 (i - l)( m2-1)+m2+(m-2)(m+l), then 

we have that f = (nLz\ Mk(y))Bi,o(X, y) E L(uQ). f is zero on orbits 1,. . , i - 1, and 

also at every point Of Oi except Pi,O. After multiplying by a suitable non-zero constant, 

we obtain a module element of the form 

(0,. . ., 031, hi+10), . . ., hn+2(t)). 

In this case every polynomial of degree m2 - 2 or less appears as the ith component 

of some element of the module, and there are 110 common roots. 

(3) This follows in the same way. Row m + 1 of the root diagram is non-full for any 

a 2 m(m2 - l), since L(uQ) will contain the product of the orbit masking functions 

for 0 1,. . , 0,. Similarly, if a 2 m(m2 - 1) + (m - 2)(m + 1 ), then L(uQ) contains the 

product Ml(y).....M,(y)B,+,,o. 0 

The actual roots present on each row of the POT root diagram may also be de- 

termined in terms of a in a simple fashion. To understand the pattern, consider the 

jiltration (increasing chain of vector subspaces) 

L(Q)cWQ)C...cL((a - l)Q)cL(aQ) 

for L(uQ). By the Riemanr-Roth Theorem, for any b 2 2g - 1, we will have strict 

inclusion L((b- 1)Q) cL(bQ), and in fact dim L(bQ) = dim L((b- l)Q)+l. Provided 

that a < m3, no element of L(uQ) vanishes at every point of D, and the dimension of 

the code CL(D,UQ) is just the dimension of L(uQ). By Proposition 2.3, the number 
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of empty boxes in the root diagram is equal to this dimension. If a < a’, then since 

L(uQ) cL(a’Q), the boxes marked in the root diagram for L(u’Q) form a subset of 

the boxes marked in the diagram for L(uQ). 

For simplicity, we give the statement for the orbits of length m2 - 1. There is a 

corresponding statement for the remaining two orbits as well, which we leave to the 

reader as an exercise. Also see Section 6 for an example. 

3.4. Theorem. Let 1 5 i < m and let a be in the range 

(i-l)(m2-1)s~ < (i-l)(m2-1)+m2+(m-2)(m+l), 

so that row i of the POT root diagram is neither fill, nor empty. The complement 
of the set of roots marked on row i of the diagram is the set of elements C(-~ E F: 

such thutk=r+s(m+l), whereO<r<m,O<s<m-2,undrn+s(m+l)+ 

(i - l)(m2 - 1) 5 a. As a result, for any given a, there are at most two rows of the 
root diagram which are neither full nor empty. 

Proof. By considering pole orders at Q, we see that each of the functions (flLzir Mk(Y)) 

xrf with rm + s(m + 1) + (i - 1 )(m2 - 1) < a is an element of L(uQ). We may exclude 

powers of x greater than m because they may be reduced using the equation of X,. 

Furthermore, we will exclude powers of y greater than m - 2, since 

Y m-’ = Mi(Y) + lower degree terms in y. 

As a result, any (nil: &&(Y)>x’Y” with s 2 m - 2 will influence the roots of row i + 1 

rather than those of row i. 
Corresponding to each such product (flLlrt Mk(Y))x’Y’ in L(uQ), we have a module 

element whose first i - 1 components are zero, and whose ith component is found by 

evaluating the product at the points of orbit i. By the last statement in Lemma 3.1, the 

product of the orbit masking functions is a non-zero constant on orbit i, so we may 

ignore that factor. Since the points of orbit i satisfy an equation of the form y = o!~x”‘+’ 

for some ei, the monomial x’fl evaluates to c&j+srl+sj(m+l) at Pi,j = (cc~,c/~+-@+‘)). 
Removing common factors in the coefficients, we have zeroes in entries 1,. . . i - 1, and 

an ith entry of the form 

d-2 

hi(t) = IF0 (ur+s(m+l)t)j. 

The roots of this polynomial are all t # a-(‘+S(m+l)) E Fi, Since CL(~,UQ) is a 

F,[t]-module, it will contain an element whose first i - 1 entries are 0, and whose ith 

entry is the greatest common divisor of the polynomials x$,2 (cC+s(m+l)t)j where r, s 

satisfyO~r~m,O~s~m-2,andrm+s(m+1)+(i-l)(m2-1)~u.The 

diagonal component g!“(t) of the POT Groebner basis element must divide this GCD. 

This argument shows that the subset of F: given by the ith row of the root diagram 

is contained in the set described in the statement of the theorem. 
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The opposite inclusion follows essentially by counting dimensions. In order to pro- 

vide a simple proof, we will postpone giving the argument until Section 4, where some 

additional structure of the collection of polynomial functions on each of the orbits will 

be introduced. 0 

4. Determining the Groebner basis by interpolation on the orbits 

Our main result in this section will be a specialized algorithm for constructing the 

full POT Groebner basis of a Hermitian CL(D,UQ) code. The key idea is that once 

we have the root diagram, the construction of the Groebner basis simply amounts to 

a sequence of interpolation problems: For each i, i = 1,. . .,m + 2, we need to find 

the fi(x,y) E L(aQ) that evaluates at the points of D to give the coefficients of the 

module element gi in the Groebner basis. 

To prepare for this, we will begin by reconsidering the techniques used in the first 

part of the proof of Theorem 3.4. In particular recall that a key role there was played 

by the functions of the form n:l: M&)x’yS. Note that there are exactly m* - 1 of 

these products with 0 < Y < m, 0 < s 5 m - 2. Moreover, their pole orders at Q are 

distinct, so they are linearly independent as rational functions on X,, or on the plane. 

Let us consider what happens when we restrict to the points of orbit Oi. Here and in 

the following discussion, Z(Oi) denotes the ideal in F4[x, y] consisting of polynomials 

vanishing at each point of the set Oi. The quotient ring F4[x, y]/Z(Oi) is the ring of 

polynomial functions on Oi. 

4.1. Lemma. Let i < m, and let vi be the linear span of the 

for 0 5 r 5 m, 0 5 s < m - 2. The restriction mapping from Vi to the ring of 
polynomial functions on Oi is an isomorphism of F, vector spaces. 

Proof. Since i 2 m, Oi consists of m* - 1 points with distinct x coordinates and we 

have the relation y = &lxm+’ on Oi, the ring of polynomial functions F4[x, y]/l(O,) 

is isomorphic to Fq[x]/(xmZ-’ - 1). The restriction mapping 

@i : K + Fq[x,yl/l(Oi) 

is clearly linear, and can be given in concrete terms as follows. For each f (x, y) E Vi, 
@i( f (X, y)) = f (X, !Y.“Xm+ ). By Lemma 3.1, each of the orbit masking functions A&(y) 

is a non-zero constant on Oi, and those factors may be ignored. In particular we see 

that 

i-l 

n M/f(y)X’f = CX’+s(“+l) 

k=l > 
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for some c E F:. As r, s range over the set of pairs with 0 5 r 2 m, 0 5 s 5 m - 2, 

we obtain non-zero multiples of each of the powers x”, u = 0,. . . , m2 - 2. Hence @i 

is smjective. Since Vi and F4[x,y]/Z(Oi) have the same dimension over Fq, @i is a 

vector space isomorphism. Cl 

As an immediate result, we see that any interpolation problem on Oi, including the 

side condition that the interpolating function vanishes on 01,. . . , Oi_1, has a unique 

solution in Vi. 

4.2. Corollary. For any collection of values cj, j = 0,. . . , m2 - 2, there is a unique 

function f (x, y) E ?$, which satisJies f (Pi,j) = cj for all j and which vanishes iden- 

tically on 01,...gOi__l. 

Proof. By standard techniques, e.g. the Lagrange interpolation formula, there is a 

unique polynomial function F(x) E Fq[x]/(xm2-’ - 1) ” F4[x,y]/Z(Oi) (of degree 

at most m2 - 2) solving the given interpolation problem on Oi. The function f (x, y) = 
@i’(F(x)) E c also vanishes on orbits 1,. . . , i - 1. 0 

Indeed, the functions Bi,j(x, y) introduced in Lemma 3.2, multiplied by the product 

of the orbit masking functions Mi( y), . . . ,Mi_l(y), give elements of Vi mapping to 

constant multiples of the usual Lagrange interpolation basis functions under @i. For 

example, 

i-l 

n Mk(~>Bi,O(X,y) =C 'Bi,0(4CIP'Xm+l) 
k=l 

m-2 

=c. k~,(cx~,,m+' _ ac,+k~~+l)).k~~(x_ tlkW)) 

m-2 
= c. tL(m-2)~l gl (p+l _ dlk(m+l)) . kg1 (n _ Clk(m-l)) 

In-2 

=c ’ ’ ,Fl (x - J). 

Dividing by the value at Pi,o, we would obtain the usual Lagrange interpolation basis 

function. 

At this point we will complete the proof of Theorem 3.4. 

Proof of Theorem 3.4 (Conclusion). Recall that we have shown that if i 5 m and a is 

intherange(i-l)(m2-1)~a<(i-l)(m2-1)+m2+(m-2)(m+1),thenL(aQ) 

contains some f (x, y) which is zero on orbits 1,. . . , i - 1, and which has as roots the 

complement of the set of CI-~ EF~ suchthatk=r+s(m+l),whereO<r<m, 

O<sIm-2,andrm+s(m+l)+(i-l)( m2 - 1) < a. It only remains to show that 

no smaller set of roots is possible. Using Corollary 4.2, we can now give a simple 

proof of this. Suppose that there were some g(x, y) E L(aQ) that evaluated to give the 
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coefficients of a module element with zeroes in components 1, . . . , i - 1, and a smaller 

set of roots. Finding such a g to produce a set of e roots {M”’ , . . , &}, for example, 

amounts to solving an interpolation problem. Let 

e e 
n (t - CP) = C Cjtj 
k=l j=O 

be the expansion of the unique manic polynomial with the given roots. We ask for a 

function whose values on Oi are 

0i,j) = 
i 

0 forallj=/+l,...,m2-2, 

Cj from (5) for j = O,...,/. 

By Corollary 4.2 there is a unique solution for g in Vi. On the other hand, by 

Theorem 3.4, there exists such a function for a larger value of a. Hence, we get 

a smaller set of roots only by going to a code with a larger a. 0 

4.3. Theorem. Let {cP , . . . , uef} be the set of roots appearing on row i of the root 

diagram for a Hermitian code CL(D,aQ). Let 

p(t) = fi (t - tlek) = 5 Cjtj, (6) 
k=l j=O 

be the unique manic polynomial of degree / with these roots. Then 

i-l 10,1-l 

fCX, Y 1 = kGl Mk(Y 1 . ,I0 cjBi, j(4 Y )lBi, jCpi,j > (7) 

is a function in L(aQ) which yields a module element g(‘) with i - 1 leading zero 

components, and ith component equal to p(t). 

Proof. Since f E 6 is the solution of the interpolation problem on Oi specified by 

the coefficients of the polynomial p(t) in (6), the only thing we need to prove is that 

this f (x, y) is in L(aQ) (i.e. that its pole order at Q is actually a or less, and not 

(i - 1 )(m2 - 1) + m2 + (m - 2)(m + 1) as one might guess from the formula). But this 

follows from Theorem 3.4 and Lemma 3.2 as well. By the latter result, the solution 

of the interpolation problem is unique in Vi. On the other hand by Theorem 3.4, there 

exists some solution of the interpolation problem in L(aQ) fl Vi. Hence this linear 

combination of the (ni_; Mk(y))Bi,j(X, y) must lie in L(aQ). 0 

In intuitive terms, the coefficients in the linear combination in (7) produce cancel- 

lations lowering the pole order at Q. 

The conclusion of the proof of Theorem 3.4, and the resulting Theorem 4.3 are 

also the basis for an algorithm for producing Groebner bases for the Hermitian codes 

CL(D, aQ), which in effect constructs the Groebner basis directly from the root diagram. 

This algorithm has a much lower complexity than general Groebner basis algorithms 
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because we are relying so heavily on the particular features of Hermitian codes. We 

will give a rudimentary version which produces POT Groebner bases with the minimal 

number m + 2 of elements, but which are not reduced (the basis elements may contain 

terms that can be removed by division with respect to other basis elements). It is easy 

to see in this situation that the basis has the same triangular form as in (2), and the 

diagonal components are the same as those appearing in the reduced basis. 

It is also possible to find solutions of our interpolation problems by solving systems 

of linear equations for the coefficients in a linear combination of the basis functions 

<l-I;:; M/O))x’v’. F or instance, knowing the degree G of the polynomial in (6), we 

would need to find the linear combination f(x, JJ) of the first m2 - l-8 of the functions 

{(~~~~(y))X’y’,O<r<m, O<s<m-2} 

(listed in increasing graded lexicographic order), which satisfy 

f Cpi,j) = 

{ 

0 forj=/+l,...,m2-2, 

1 for j = L. 

This yields a system of m2 - 1 - 8 inhomogeneous linear equations for the m2 - 1 - L’ 

coefficients, and there is a unique solution. By our previous results, we know that 

the corresponding module element will have a non-zero ith component of minimal 

possible degree, so it must have the correct set of roots. Moreover, the two methods are 

complementary in a sense - the interpolation method is more efficient for rows of the 

root diagram containing a small number of roots, while solving a system of equations 

is preferable if the number of roots is large. In our description of the algorithm, for 

simplicity we will use the interpolation approach exclusively. 

In the following, we will denote by GetRootDiagram a procedure which given 

a 2 1, determines the roots of each of the diagonal components of the POT Groebner 

basis elements using Theorems 3.3 and 3.4. We will assume that GetRootDiagram 

returns a list of m + 2 lists of roots (corresponding to the marked boxes in the root 

diagram). We will denote by Get ValueList a procedure which takes as input a list of 

elements in F: and returns the list of coefficients in the unique manic polynomial of 

minimal degree over F, with those roots, as in (5), including zeroes for powers of t 

higher than the number of roots. Finally, we will by denote by EvaluateCombination 

a function which takes a list of coefficients: values = {Cj} as in (7), and evaluates 

the linear combination of the functions (nL:i Mk(v))Bi,j(X, y) given in (7), at a point 

P = (x,y) E F;. 

4.4. Proposition. The following algorithm correctly computes a (non-reduced) POT 

Groebner basis for the module CL(D,~Q). 

Input: a, {Pi,j} (the m3 points of X, rational over F4) 

Output: A non-reduced POT Groebner basis 9 

= {g(i),..., g(m+2)} for CL(D,uQ) on X, 
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Uses: GetRootDiagram, GetValueList, EvaluateCombination 

rootdiagram := GetRootDiagram(a) 

for i from 1 to m + 2 do 

if Irootdiagram[i]] < ]Oi( then # the number of roots on row i 

values := GetValueList(rootdiagram[i]) 

for k from 1 to i - 1 do 
&’ ._ .- 0 

for k from i to m + 2 do 
(9 gk := 0 

for j from 0 to lOi] - 1 do 
gf’ := gt’ + EvaluateCombination(values,Pk,j))tie, 

else 
g(i) := (tlc)l _ l)ei 

$9 := 9 u {g(i)} 

Proof. The correctness of the algorithm follows directly from Theorem 4.3. 0 

Note that if a 2 (i - l)(m2 - 1) + m2 + (m - 2)(m + 1) for some i, the ith element 

of 9 computed by this algorithm is just the module element formed by evaluating 

the function (nilii Mk(Y))Bi,a(X, y)/‘Bi,s(Pi,s) at all the points of X,. AS a result, it is 

actually independent of a (in this range), and if we wanted Groebner bases for several 

codes C@,uQ) with a as above, we could “reuse” this element. 

If a reduced Groebner basis is required, then two approaches are possible. First, 

we could simply apply the algorithm of 5.4 to produce a non-reduced basis, and then 

reduce it. This would mean subtracting suitable multiples of g(‘+‘), . . . ,g(“+2) from 

each gci), i = m + 1, m,. . . , 1 in that order, to eliminate terms behind the leading term. 

Since that computation itself can be somewhat large for large m, it is also possible 

to replace the linear combinations of basis functions in (7) by linear combinations of 

ni<i Mk(YlBi,j(X5 Y) f or more than one i. The idea is the same as in the proof of 

Theorem 4.3, so we will not give a full development here. 

5. The dual code 

In this section, we wish to address the question: 

5.1. Question. What is the precise relation between the root diagrams for the Hermitian 

code CL(~,.Q) and for the dual code Co(D,aQ)? (By [8, Section VII.4.21, the dual 

code is equal to CL(D,U’Q) for an a’ determined by a in this case, so our results will 

also indicate a certain duality between the root diagrams for pairs of CL(D,UQ) codes.) 
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As in Section 2, the answer only depends on the existence of an automorphism of 

order q - 1. So we will give a general argument that applies to any linear code over F, 

with this extra structure. Of course, a nice answer is well-known in the case of cyclic 

codes of block length q - 1. (See the comments after the statement of Theorem 5.2 

below.) Our results will show that there is an extension of this to the more general 

codes under consideration. 

We need two additional pieces of terminology. First, we will call the PUT monomial 

ordering on Fq[tlr based on the reversed ordering of the standard basis: 

the rPOT ordering. If we list the elements of an rPOT Groebner basis with their 

leading terms in increasing order, we will have something of the form: 

h(l) = (h’,“,O,. . . , O), 

hC2) = (h?), hf), 0,. . . ) O), 

h”) = (hr’),hf), . . .,hl’)). 

(We are assuming here that the module C is finite-dimensional as a vector space over 

Fq, so that there are Groebner basis elements whose leading terms contain each of the 

standard basis vectors.) Since we have merely reordered the components of the r-tuples, 

everything we said before for POT Groebner bases carries over mutatis mutandis to 

rPOT Groebner bases. In particular, we can also construct a root diagram from the 

rPOT diagonal components hi’). 

Second, given any root diagram, we can construct another similar diagram by, in 

each row, placing an X in the position corresponding to p-’ for each root /3 in the 

original diagram. We will call this the inverted root diagram. See Section 6 below for 

an example. 

5.2. Theorem. Let C be a linear code over F, with an automorphism of order q - 1. 

Then the inverted root diagram for the POT Groebner basis of c and the root 
diagram for the rPOT Groebner basis of Cl are complements of each other. 

Note that in the case of a cyclic code of blocklength n = q - 1, Theorem 5.2 reduces 

to a well-known fact. In the case r = 1, the Groebner basis for C will consist of the 

single generator polynomial g(t) 1 tq-’ - 1, and the corresponding one-row root diagram 

just gives the roots of g. Similarly, we get a single generator polynomial h(t) for Cl, 

and its set of roots. The rPOT and POT orderings are the same in the case r = 1, so 

we have the familiar result that the set of roots of h(t) is the complement of the set 

of inverses of the roots of g(t). 

Proof of Theorem 5.2. Our proof will be in several steps, which we break out as 

separate lemmas. First we give another characterization of the dual code CL. 



S = ~Fq[t]/(dO’l - 1). 
i=l 

Define a mapping [ , ]:SxS--,F,asfollows.Forg=(gi ,..., g,)andh=(hi ,..., h, 

in S, let 

[g, h] = C constant term in gi(t)hi(t-‘) 
i=l 
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5.3. Definition. Let 

.I 

where 

hi(t-‘) Z hi(t’““-l) 

in Fq[t]/(tlorl - l), the products gi(t)hi(t-‘) are computed in Fq[t]/(tlo~l - l), and the 

“constant terms” refer to the constant terms in the unique standard representatives of 

the products in FQ[t]/(t lo11 - l), obtained by division with respect to t1oll - 1. 

It is clear that [ , ] defines a bilinear form on S. 

5.4. Lemma. Let C be a linear code over F, with an automorphism of order q - 1, 

and denote also by C the corresponding subspace of S constructed as above. Then 
under the same construction the dual code CA corresponds to 

{h = (h(t), . . . , h,(t)) E S : [g,h] = 0 for all g E C}. 

Proof. The proof is essentially the same as the proof for the corresponding fact for 

cyclic codes of blocklength q - 1. 0 

The idea of our proof of Theorem 5.2 is to start from the unique POT reduced 

Groebner basis for c, and construct a set of elements % = {h(l), . . . , h(‘)} in Cl, 

whose rPOT root diagram is the complement of the inverted root diagram for the 

POT Groebner basis 9 of C. Then we will argue that 2 must be an rPOT Groebner 

basis of Cl. So assume B as in (2) above is the reduced POT Groebner basis for c. 

We let Bi be the set of elements /I E F: satisfying @ozl = 1, but which are not 

roots of the diagonal component gfi). Let 

hi(t) = n (t - b-l). 
BE& 

(9) 

(That is, the set of roots of hi(t-‘) is the complement of the set of roots of g!“(t) in 

the set of p E Ft satisfying /Ilo/ = 1). 
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5.5. Lemma. There exists a collection 2 of elements h(‘) E CL of the form: 

h(l) = (h,,O ,..., 0), 

hc2) = (hi*‘, h2, 0,. . . ,O), 

h(‘) = (h’,“, hf), , . . ,h,), 

where the hi are as in (9) above. 

Proof. The proof is by induction on Y. For r = 1, our assertion follows directly from 

the usual description of the dual of a cyclic code of length n = q - 1. The induction 

step consists of determining the subdiagonal entries in h(‘) to make [/I(‘), h(‘)] = 0 for 

each i = l,..., r - 1. We will leave the details to the reader. 0 

To complete the proof of Theorem 5.2, we need to show that A+ is actually an 

rPOT Groebner basis for the module C I. That Z’ is an rPOT Groebner basis for the 

submodule of Fg[tlr that it generates is actually obvious. (The rPOT leading terms 

are the leading terms in the diagonal components hi. These involve distinct standard 

basis vectors, so Buchberger’s criterion implies that S is a Groebner basis.) Hence, 

we only need show: 

5.6. Lemma. Z@ generates Cl. 

Proof. To show this, it suffices to consider the image of the submodule spanned by I? 

under the mapping 7~ : Fq[tlr + S. By the above, z( (2)) c Cl. On the other hand 

from the form of the leading terms, it is clear that the dimension of x((X)) as F, 

vector space is equal to 

dimF,,(n((S))) = k(iOil - deghi(t)) = &deggj’) 
i=l i=l 

On the other hand, the dimension of CL is 

dimF4(C1) = 2 IOil - dimF4(C) 
i=l 

zl$ Ioil - z$ (IOil - degd’)). 

Hence dimp,(z((%))) = dimFq(C1) and the proof of Lemma 5.6 and Theorem 5.2 

are complete. 0 

6. An extended example 

Because of the combinatorial intricacy of some of the results in the previous sections, 

we wish to illustrate our conclusions by working out a representative example in full 

detail. 
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Consider the code C = CL@, 19Q) on the Hermitian curve over Fg and the automor- 

phism o of order 8 as in (1). The automorphism o permutes the 27 affine Fg-rational 

points in 5 orbits: three of length 8, one of length 2 and one of length 1. 

First we determine the POT root diagram for this code directly from the Groebner 

basis. Using the normalization Fg = Fs[a]/(cr2 +a- 1) and choosing as orbit representa- 

tives the three affine points with x = 1, the point (0,a2), and (0,O) as in [3, Eq. (3.2)], 

the POT Groebner basis Q has the form: 

g(‘) = (1, L76, at5 + at4 + CA3 + Lx2t2 + at + 2, a2t + a, l), 

gc2) = (0, t + a5, t5 + t2t4 + a7t3 + Cr7t + a7, a2t + a4, l), 

g(3) = (O,O, t6 + LA5 + a2t4 + a7t3 + at2 + u4t + 2, dt + 2, UT), 

gC4) = (0, 0, 0, t2 - 1, O), 

g(S) = (0, 0, 0, 0, t - 1). 

The diagonal components are g{“(t) = 1, gf)(t) = t + c?, 

&g’(t) = t6 + GAS + a2t4 + Cr7t3 + at2 + ci4t + cx5, 

g?)(t) = t2 - 1, and g?‘(t) = t - 1. Hence the first row of the root diagram will 

be empty, the second will contain a single X corresponding to the root of gi2’(t) = 
t + cc5 = 0 (t = cc), the third row will contain an X for each of the six roots of 

gc3)(t) = 0, and so forth. 3 

(10) 

Next, we will show that this diagram conforms to the general description given in 

Theorems 3.3 and 3.4. We have a = 19 > (3 - 1)(32 - 1) = 16, so by (1) of the 

theorem, none of the first 3 rows is full. On the other hand, by part (2) of the theorem, 

19 2 (1 - 1)(32 - 1) + 9 + 4 = 13, so row 1 is empty. (For codes with larger a, we 

note that row 2 of the root diagram would also be empty for any a 2 8 + 13 = 21, 

and row 4 would not be full for any a 2 24.) 

Consider the second row of the root diagram (lo), which contains the single entry 

t = a. The question we will address next is: Why must every module element whose 

first component is 0 have a second component whose set of roots contains a? (This 

is a restatement of the fact that the diagonal component g?‘(t) in the POT Groebner 

basis is t - a.) This may be seen in the following way. Note that since x has pole 

order 3 at Q and y has pole order 4 at Q, L( 19Q) contains the functions: 
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(It also contains Mt(y)y2, for example. But by part 1) of Theorem 3.3, Mt(y)Mz(y) E 

L( 16Q) c L( 19Q) as well. That function is a linear combination of Mi (y)y2, Mi(y)y, 

and Mi (y). Hence, in the filtration of L( 19Q), the step from L( 15Q) to L( 16Q), where 

Mi(y)y2 is added, is responsible, so to speak, for removing one of the roots on row 3 

rather than one on row 2. A similar comment applies to A41 (y>xy2 E L( 19Q)\L( 1 SQ).) 

From suitable constant multiples of the seven functions in (11) we get module 

elements of the form 

(0, 1 + t + t2 + . . . + 9, *, *, *) 

(0, 1 + at + a2t2 + . . f cw, *, *, *) 

(0, a5 + at + a5t2 + . . . + cd, *, *, *) 

(0, a5 + a3t + cct2 + . . . + t7, *, *, *) 

(where the * components are irrelevant for this discussion). We note that at the points 

of orbit 2 (orbit representative (1, a5)), we have y = 615x4. Hence the module element 

constructed from Mi(y)y can also be written in the form 

(0, a5( 1 + a4t + (ccy + . . . + (a4t)7), *, *, *) 

by factoring. Similarly, we see that all of the module elements above have the form 

(O,c( 1 + (a’t) + (a’t)2 + . . . + (a’t)7), *, *, *) 

for non-zero constants c and j = 0, 1,4,2,5,3,6 respectively. The roots of the equation 

1 + (CA) + (cdq2 +. . . + (c@ = 0 

are all the non-zero elements of Fg, with the exception of cr-j. Hence we see that 

CL(D, 19Q) contains 7 elements whose first components are zero, and whose second 

components are polynomials of degree 7 having roots 

l all t # I in F,* (j = 0), 

l all t#a7 inFg* (j= l), 

l all t # m4 in F,* (j = 4) 

l all t # a2 in F,* (j = 6). 

Since CL(D,~Q) is a module over Fg[t], there is some element with zero first com- 

ponent, whose second component is the greatest common divisor of these polynomials. 

The leading component of that element is t - TV = t + ~1~. As we noted before, since 

19 is not sufficiently large there is no element of L( 19Q) vanishing at all points of 
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orbit 1 and at all points of orbit 2 except P 2,s. Hence the POT Groebner basis will 

contain gc2) with diagonal component t + x5. 

Finally, we will indicate how the results of Section 5 work in this case. The inverted 

root diagram constructed from (10) is 

(12) 

(For instance, on the second row, we place an X in the position corresponding to 

dI-’ = CL) 

We claim the root diagram for the rPOT Groebner basis of CQ(D, 19Q) on the 

Hermitian curve over Fg is found by complementing the inverted root diagram 

from (12): 

(13) 

(By [8, Section VII.4.21, the dual code is the same as CL(D, 12Q) in this case. That (13) 

is the correct rPOT root diagram can be derived directly by a Groebner basis calcula- 

tion. We leave the details to the reader.) 
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