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Delayed Decision-Feedback Sequence Estimation
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Abstract—Delayed decision-feedback sequence estimation (DDFSE) is
a detection algorithm that provides a direct tradeoff between complexity
and performance in digital communications over intersymbol interference
channels. The complexity of the glgorithm is controlled by a parameter u
and can be varied from zero tq the 'l_pemory of the channel (which can be
infinite). The algorithy is based on a trellis with the number of states
exponential in u. When u = §, DDFSE reduces to the decision-feedback
detector. When the memory of the channel is finite, PDFSE with
maximal complexity is equivalept to the Viterbi algorithm. Of course, if
the channel has infinité mepnory, the Viterbi alg‘ori’thm capnot be
implemented. For the infermediate values of g, thé algorithm can be
described as a reduced-state Viterbi algorithm with feedback incorporated
into the structure of path metric computations.

We first consider DDFSE for uncoded PAM signals. Estimates on the
performance of the algorithm are given, and simulation results are
provided for several examples. A more general form of DDFSE
applicable to coded modulation systems is also presented. As an example,
detection of trellis coded QPSK signals over intersymbol interference
channels is discussed.

I. INTRODUCTION

CONSIDER the problem of detection of digital data in the
presence of intersymbol interference (ISI) and additive
noise. Assume that the receiver employs a matched filter
which produces a sequence of sampled output values. Thus, a
discrete time model of the channel is obtained. The objective
of a detection algorithm is to produce a reliable decision of the
input sequence given the received data.

Various approaches to data detection can be divided into
symbol by symbol an sequence detection [4]. The first class
contains linear and decision-feedback detectors. These
schemes have low complexity and undesirably high error
rates. Another approach to data detection is given by maxi-
mum-likelihood sequence estimation (MLSE) [S]. The trellis-
based Viterbi algorithm solves the MLSE problem recursively
when the memory of the channel is finite. The symbol error
rate of the Viterbi algorithm is often much lower than error
rates of the symbol by symbol detectors. However, the total
storage (complexity) of the algorithm is proportional to the
number of states of the trellis which grows exponentially with
the channel memory length. When the channel memory
becomes large (it can be infinite), the algorithm becomes
impractical.

It is desirable to construct a detection method that reduces
the complexity of the Viterbi algorithm by *‘shortening’’ the
memory of the channel. Various approaches are described in
[11-[3]1, [81-[10], {16], [18]-[22]. A popular method is the
direct truncation of the channel response. In this scheme,
analyzed by McLane [22], residual interference terms are not
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taken into account by the detector, and cause severe error
propagation. Another approach is to use a linear (or a decision
feedback) equalizer to estimate the input sequence and use
these estimates to cancel the tail of the ISI in the received
sequence prior to passing it to the Viterbi algorithm [8].
However, prefiltering still results in significant error propaga-
tion and high error rate.

Delayed decision-feedback sequence estimation (DDFSE) is
another method to reduce the number of states. As in the
Viterbi algorithm, at each step, the states describe all possible
values taken on by a finite number u of previous inputs. While
this number y is equal to the memory length of the channel for
the Viterbi algorithm, in DDFSE it can be freely chosen; u is
finite. when the channel memory is infinite. In the DDFSE
algorithm, each state provides only partial information about
the actual state of the channel. The required residual informa-
tion is provided by an estimate associated with each state of the
trellis. In principle, this information can be extracted from the
path leading to each state. The channel state estimate and the
trellis state are used in computing the branch metric. This
operation is similar to decision-feedback equalization since the
partial state estimate can be used to estimate the tail of the ISI
in the received signal.

The complexity of DDFSE is determined by the number of
trellis states, which is exponential in u. At its minimal value (u
= 0), the algorithm reduces to the decision-feedback detec-
tion. When the memory length of the channel 7 is finite,
DDFSE with the maximal value of p (given by 7) is equivalent
to the Viterbi algorithm. When the memory of the channel is
infinite, the Viterbi algorithm cannot be implemented. The
symbol error rate of DDFSE was estimated and shown to
approach rapidly the symbol error rate of MLSE as # grows
large. This analysis is confirmed by computer simulations for
several examples.

Large input alphabet sizes which arise in communications
over bandlimited channels contribute to high complexity of the
MLSE algorithm along with large memory lengths of ISI
channels. This problem was addressed in the papers by
Eyuboglu and Quereshi [9], [10]. They independently devel-
oped a reduced-state algorithm similar to DDFSE. In addition
to introducing feedback into the structure of the path metric
computations, they proposed to reduce complexity further by
using ideas of set partitioning [12], [13]. The resulting
algorithm, called RSSE, is applicable to finite memory
channels with large input alphabets. On the other hand,
DDFSE can handle infinite ISI channels with rational re-
sponses by using recursion in path metric computations. Thus,
DDFSE is useful for a wider class of channels, whereas RSSE
is more applicable for systems with large input alphabet sizes.
The applications of RSSE considered in [9]1, [10] differ from
the applications of DDFSE studied in this paper. In [9], [10],
performance of RSSE is evaluated when it is used for detection
of uncoded signals transmitted over narrow-band channels.
We chose optical and magnetic recording channel models for
the study of the DDFSE algorithm. As another important
application, we consider the use of DDFSE for detection of
trellis coded signals on ISI channels.

In Section II, we present the discrete time, white Gaussian
noise channel model which arises at the output of a sampled,
whitened matched filter receiver in pulse amplitude modula-
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Fig. 1. The discrete time channel model.
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Fig. 2. The discrete time channel model and the zero-forcing decision
feedback detector.

tion systems. Section III contains the description of the zero-
forcing decision feedback detector and MLSE for this channel
model. We develop DDFSE in Section IV. This section also
contains examples of the DDFSE algorithm for a finite
impulse response channel and for two infinite impulse re-
sponse channel models arising in recording. Performance
analysis of the DDFSE algorithm and simulation examples are
given in Section V. In Section VI, the DDFSE algorithm is
presented for trellis coded signals on ISI channels.

II. DisCRETE TIME, WHITE GAUSSIAN NOISE MODEL

Consider the following discrete time channel model. The
input to the channel is given by a sequence of points drawn
from a finite subset of real numbers X called the modulation
set. The data sequence X; is described by the D transform

x(D)=Xo+x,D+ - +X, D"

The output sequence ¥, = X5 fiXkoi + Z where f; is the
channel transfer function, f; > 0 and z; is an additive white
Gaussian noise sequence (AWGN) (i.e., an i.i.d sequence of
Gaussian random variables with zero mean and variance Ezfc
= Np). Thus, in terms of D transforms (Fig. 1),

y(D)=f(D)x(D)+z(D). M

We assume that the causal function f(D) is rational, stable
and can be factored as f(D) = e(D)h(D) where e(D) is a
polynomial with all roots on the unit circle, and A(D) is
minimum phase (i.e., both k(D) and 1/h(D) are causal and
stable). The channel memory is defined as the degree of f(D),
n = deg (f(D)), which is finite if f(D) is a polynomial.

This discrete-time channel model arises in the pulse
amplitude modulation (PAM) systems at the output of a
sampled, whitened matched filter receiver [5], [16] (the
receiver filter can be chosen so that f(D) satisfies above
assumptions). As pointed out in the following section, this
receiver is optimal for zero-forcing decision-feedback detec-
tion. In addition, the performance of the DDFSE algorithm
benefits from selecting /(D) as a minimum phase filter, since
the energy of the first u terms is maximized [10], [26]. Note
that the performance of MLSE does not depend on this
assumption [5], [11].

A more general model arises when the signal y in (1) takes
on complex values [11]. The extension of the results of the
paper to the complek case is straightforward and is discussed
in the example which deals with trellis coded quadrature
amplitude modu!g;ed (QAM) systems [12], [13].

III. DETECTION ALGORITHMS
A. Zera-Farcing Decision Feedback Detector

A zero-farging decision feedback (DF) detector [17] is
an example of a symbol by symbol detection method (Fig. 2).
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It involves two filters, an equalizer w(D) and a feedback filter
b(D), chosen to eliminate all ISI and to maximize the signal-
to-noise ratio (SNR) at the input to the quantizer. For the
system (1) with the transfer function f(D) specified in Section
11, the filters are [16]

w(D)=1/fo, 2

b(D)=f(D)/fo—1. 3

When X, is a binary equiprobable i.i.d sequence (P(x; = 0)
= P(xx = 1) = 1/2), then the signal-to-noise ratio at the
input to the quantizer is given by

SNR =/2/(4Np). 4)

In the absence of previous decision errors, the probability that
the quantizer produces a symbol error is

Q(SNR) = Q[ fo/(2VNo)] ©®)
where the Q function
o) =— |~ e ay. ©
Vor dx

B. Maximum-Likelihood Sequence Estimation

Another approach to detection is illustrated by maximum-
likelihood sequence estimation (MLSE) [5]. Given the
output sequence y(1), the objective of MLSE is to choose an
estimate, X, of the input sequence that maximizes the
likelihood function ¢(y|x) (the conditional probability den-
sity of the output y given the input x). Since the metric M of
x(D),

M= y(D)-f(D)x(D)||*=3 (x—1)* M
*

[where (D) = f(D)x(D)], is proportional to the log
likelihood function—log $(y|x), the sequence X(D) that
minimizes the metric M is the sojution to the maximum-
likelihood sequence estimation problem.

When the channel memory 7 = deg (f(D)) is finite, the
solution to the MLSE problem (7) can be computed recur-
sively by the Viterbi algorithm [5]. This recursive solution
follows from the finite-state machine (FSM) description of the
channel. In such a FSM representation, each state s corres-
ponds to the state of the channel at time k, given by the string
of past inputs, sy = (Xg_1, " * Xi_y). The transition or branch
between states s, and s;.; = Xk, **° Xkr1-9) IS labeled with
the input x; and the filter output #, = 27_, fixx_i. The branch
metric is defined as (¢ — #)?. When the FSM is described by
a trellis with |X|" states, each input sequence x(D) corres-
ponds to a path through the trellis (i.e., a sequence of branches
and states). Then the path metric M of x(D), given by (7), is
equal to the sum of the branch metrics associated with the path
of x(D). Thus, the path metric of x(D) can be computed
recursively as M(sg+1) = M(sp) + (Vi — t,)? [where sg, s1,

- is the state path of x(D)].

Since the Viterbi algorithm stores information for each
possible state of the FSM, the amount of storage is propor-
tional to the number of states |X|7. Thus, when 7 is very
large, the Viterbi algorithm becomes impractical; the al-
gorithm breaks down when 7 is infinite.

IV. DELAYED DECISION-FEEDBACK SEQUENCE ESTIMATION FOR
GAUSSIAN CHANNELS
A. UV Decomposition of Channel

Any discrete-time channel specified by a causal, rational
transfer function f(D) can be described in terms of a state
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machine with the state space .§ chosen as a function of the
obvious realization of the system; |S| = o if n = deg ( f(D))
is infinite. The state space .§ can always be decomposed § =
U x V where |U| = |X|* where p is finite and u < 5. The
decomposition § = U X V is obtained by representing the
rational function f(D) = B(D)/vy(D) [where B(D) and v(D)
are polynomials; vy = 1 and v(D) = 1 if 4 is finite] as the sum

S(D)=f,(D)+D+**'f*(D) (3)
where p is the reduced memory of the channel (n < % and
p < o),

f(DY= fiD', f+(D)=Y, fiDi-+"L )

i=0 i=p+1

Note that f*(D) = (B(D) — f(D)yy(D)D “*V/y(D)
= B*(D)/y(D) is also rational. Let deg (B*(D)) = n,
deg (y(D)) = m and w(D) = f*(D)x(D). Then

Wi= 3 B Xk-i— 3y viwk-iif =00 (m>0), (10a)

i=0 i=1

p—p—1
W= E Jivu1Xeiif <o (m=0). (10b)
i=0
The output of the channel is given by

13
yk:Efixk~i+ Wi—p-1+ 2k (10c)

i=0

From (10), the state of the system at time k can be chosen as

(xk—ls T xk—p,, xk—,:,—ls e xk—y—n’ wk~u—1’
Sp= C Wkop-m) =0

Kke—ts """ Xy Xk—pm1y *** Ximy) M< 0,
The state is decomposed into

Ue=(Xg_15 " * Xi—p)s (11a)

Kk—p=15 """ Xk—p—ns Wr—p-15 " ** wk—u—m) n=0®,
V=

(xk—p.—la e xk—n) 77<°°'

(11b)

Note that the state v, is a function of u; and vy if 4 > 0.
(When u = 0, v, is a function of x; and vy. In the rest of this
section, we consider the case p > 0.) The partial state
estimator (i, vy) is defined as the mapping that associates
the value of vy, ; with states u; and vy.

B. Description of the Algorithm

The delayed decision-feedback sequence estimation al-
gorithm (DDFSE) recursively finds an approximation to the
maximum-likelihood sequence estimation problem. It is based
on a trellis with a reduced number of states. The states of the
trellis are given by the elements of the U-space (11a). At time
k + 1, the algorithm stores for each possible state in U:

1) the best path leading to that state,

2) the metric of that path,

3) an estimate of the partial state in V.

The recursion step involves the following.

1) Computing for each (state, next state) pair the sum of the

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 5, MAY 1989

Fig. 3. A path through the trellis of the DDFSE algorithm (u = 1) for the

FIR channel with response f(D) = f, + iD + F,D.

path metric plus the branch metric given by (¥, — #)? with
ty = 2:-‘:0 j}xk_, + Wk~“N| where (Xk, Ty Xk_“) are
determined by the (state, next state) pair. The estimate,
Wi-,—1, of wy_,_ is obtained from the estimate of the partial
state in V [stored with (state)] using (10, 11).

2) For each value of (next state) the best (smallest) metric
sum is determined and the (state) which gives rise to the best
(smallest sum) edge is selected.

3) For each value of (next state) an estimate of the partial
state in V is made by applying the partial state estimator & to
the (state) chosen in 2). As in the Viterbi algorithm, the path
leading to each (next state) is found by extending the best path
determined in 2).

The DDFSE algorithm requires an amount of storage
proportional to the number of states in U (i.e., | X|#). The
algorithm complexity is proportional to the length of the
sequence times | X{*.

The DDFSE algorithm combines structures of the Viterbi
algorithm and the decision feedback detector. As in the Viterbi
algorithm, it uses a state machine description of the channel to
recursively estimate the best path in the trellis while storing
only one path for each state. But since each state of the
DDFSE trellis provides only partial information about the full
state of the channel, the algorithm also uses the best path
leading to each state to compute the metric. An estimate of the
partial state in ¥ stores ‘‘feedback information’’ extracted
from the best path. By analogy with the decision-feedback
detector, this estimate is used to cancel interference from past
inputs greater than u samples in the past. Thus, the decision
feedback operation is delayed by u. Note that if U = .S, the
algorithm reduces to the Viterbi algorithm, If ¥ = §, the
algorithm is equivalent to the zero-forcing decision feedback
detection.

C. Examples

Example 1) Finite Impulse Response Channel: Consider
a finite impulse response (FIR) discrete time channel with
transfer function

S(D)=fo+fiD+f, D (12)

The zero-forcing, DF detector for this channel (2, 3) is
given by an equalizer w(D) = 1/f;, and a feedback filter
b(D) = (fiD + f,D?)/ f,. The Viterbi algorithm is based on
a trellis with the state space given by .§ = X X X. At time &k
the state is given by (xx_;, Xi_2)-

The DDFSE algorithm with 4 = 1 decomposes the state
space § = U X V, with U = ¥V = X. An estimate of v, =
Xik—2 € V is stored with each state uy = x;., € U in the
DDFSE trellis. The branch metric is given by (yx — foxx —
SiXe_1 — Wy_1)? where W;_, is the estimate of f,x;_, obtained
from the estimate of x,_, € V. The partial state estimator is
Uks1 = U(Uk, vg) = uy. Fig. 3 shows a path through the trellis
of the DDFSE (1 = 1) with partial state estimates for states
along the path and branch metrics. :

Example 2) A One-Pole Channel Model: One simple
model for optical recording arises when the channel filter in
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(1) is chosen as the infinite series

f(D)=A'3) a*DK=

, O<ax<l.
i=0 D

(13

-«

The response f(D) is minimum phase; the zero-forcing
decision-feedback equalizer (2, 3) results in the forward filter
w(D) = 1/A and the feedback filter b(D) = aD/(1 — aD).

The Viterbi algorithm can not be applied to this channel
since the ISI is infinite. For the DDFSE with complexity
parameter p (9), f,(D) = Al + aD + -+ a*D*), f*(D)
= Aa**'/(1 — aD). Then

yk=A(xk+axk_1+ e +(¥“Xk,u)+wk,“;1+zk

where wy = Aa**'x; + awy_;. The state of the channel factors
into uy=(Xx_1, "5 Xk—,) and vy = wi_,_ (11). The branch
metric is thus given by

k= A —axg_y— ot X ) = W y1)?

where Wi_,_; is an estimate of wy_,_ (given by values in V
stored w1th states in U) and the partial state estimator is
Oug, vi) = Aartix_, + au.

Example 3) A One-Pole, One-Zero Channel Model: A
similar simple model for magnetic recording is obtained by
choosing f(D) to be

AQl D)

fD)y=~——%

The (1 — D) factor accounts for the differentiation in the read
process of a magnetic recording channel.

The zero-forcing decision-feedback equalizer (2, 3) has the
same w(D) as the one-pole channel and

b(D)=D(a-1)/(1 —aD).

Since the filter f(D) is an infinite impulse response (IIR),
the Viterbi algorithm does not exist for this channel. In
DDFSE, (9) f(D) = A(1 + Z¢_ a'Di(a — 1)/a), f*(D) =
Aat(a — 1)/(1 — aD). The states v, and v; are the same as
in the one-pole example. The partial state estimator is 0 (x, vi)
= Ao — Dxy_, + avg .

(14)

V. ANALYSIS AND BOUNDS
A. Derivation

Consider first a discrete time FIR channel (1) with f(D) =
fo + iD + + f,D" where 7 is finite. The Viterbi
algorithm for this channel has |X|" trellis states. Our error
analysis of the DDFSE is based on error analysis for MLSE
[5]. Thus, we first outline how an upper bound on the symbol
error rate is found for the Viterbi algorithm. We assume that
the input alphabet is X = {0, 1, --- m — 1} where m is an
integer. Let x(D) and #(D) be the input sequence and the
estimate produced by the algorithm. Define the input error
sequence as e(D) = x(D) — X(D). Let s(D) be the sequence
of channel states in the path of x(D), and let §(D) be the same
for £(D). Define

H{(D)=f(D)x(D), t(D)=f(D)x(D) 1s5)
as the signal sequence and its estimate. Then an error event
occurs between times k; and k; if states s, = 8k, St, = Sky»
buts, # Sy fork, < k < k. The squared distance of the error
event is defined as d? = T2 k1 (t« — h)? For moderate
signal-to-noise ratios [5], an upper bound on the symbol error
rate is dominated by the term

l ‘dminl]
o3 >

n-1 mp— |e1

vy [T

(16)
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where the Q function is given by (6), the minimum distance
dnin = min |d| (the minimum is taken over the set of all error
events), and Ay, is the set of error events which achieve the
minimum distance. As error event A is an element of this set,
w()\), is the number of symbol errors entailed by an error
event A\, and n is the duration of an error event A (the
assumption is made that all error events start at time 0).

The analysis of performance of DDFSE is also based on
estimating probabilities of error events. Error events for
DDFSE are defined in the same way as for the Viterbi
algorithm, except channel states s(D) are replaced by states
u(D) of the DDFSE trellis (11a). Thus, an error event occurs
between times k, and k; if the elements of the state sequence 1,
and its estimate &, agree at times k, and k,, but disagree at
each time k for k;, < k < k,. Because of feedback, the path
leading to the starting state u,, affects the metrics of the
sequences associated with the error event and an upper bound
on the probability of occurrence of the error event. Thus, as
opposed to the Viterbi algorithm, error propagation affects
performance of the DDFSE algorithm.

First consider the following upper bound on the probability
that a particular error event occurs between times k; and k;
given that no errors occur for 7 steps preceding the time &,
ie.,

(Xiey—1s Xky-25 * Reyon)-

an
Note that the first u symbols in (17) always agree since u;, =

iy, . For the error event to occur, the following inequality must
hold

xkl-'q)z()?k]—la fk]*ly Tt

ky—1 ka1
E (Pe—r)*> E (= Fe)? (18)
k=ky k=k

where y; is the received sequence (1), ¥4 = ¢ + Zx. The

estimates of the signal #; (15) are

© P
’kZEfiXk—H' Wi o1 (ug), fk=2fifk4+ Wi a1 (k)
i=0 i=0

where W;_,_( ) are the estimates of the residual interference
Wi_u1 = E:L +1fixx—i derived from the paths leading to uy
and #,. Note that under the assumption (17) that no errors
occur for 7 steps before ki, Wy, 1(uy) = Wi, fork; = k
< ky,and sory = . In general, this will not be true. Define
the squared distance of the error event as d? = X%}, d2 where
the signal error sequence

min (k—ky,7)

E f}ek_,‘, k]Sk(kz.

i=0

de=rc—Fi=

(19)

The upper limit on the summation in (19) indicates that d; does
not depend on the error sequence prior to the time k = k.
Under the assumption that the path leading to the state u, is
correct, ¢ = O for kK, — 7 < k < kj, and the upper limit
could be chosen simply as n without affecting the result.
However, in the form (19), the definition of d, will apply to
more general treatment later in this section.

From (17), t; = ryand ¢, — 7, = di. Thus, from (18), the
conditional probability of this error event is upper bounded by
(161

ky-

' m—|el [Idl]
===

(20)

Now consider the upper bound on the conditional probabil-
ity of the same error event given an arbitrary path leading to
the state Ugy- Then €-1 = " = -y = 0, but €ky—(u+1)s

s €g,—, are not nccessarxly Zero. Dcﬁne the residual signal
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r(D)

rd)

Fig. 4. Decision process in the signal space.

€rror sequence
i

2 ﬁek_i ikak1—1+T]
Pr= 1§ i=k—k+1 21
0 otherwise

Then &, — ry = pi, tx — Fr = di + px where dy is giVCl’l by
(19). An error event occurs if the inequality (18) holds. It
follows [16] that the conditional probability that this error
event occurs given the path leading to the state uy, is upper
bounded by

lal
f17 1o | 2 @
=k, M VN, ,
k-1
=Y dim/ld] . @3)
K=k,

Note that the error sequences dj and p, depend on the input
errors following the start of the error event k, and preceding it,
respectively. The parameter p can be interpreted as a
projection of the residual signal error vector with coordinates
P« on the signal error vector with coordinates d; in the (k, —
k))-dimensional signal space [8] (Fig. 4).

Expressions (20) and (22) are used to determine an upper
bound on the probability that an error event A occurs between
times k; and k, [16]. An upper bound on the probability of
occurrence of the error event A is given by

l,
OB § (Y- [T e
=k, M Ny «

where P, is the probability that £, is the estimated sequence
for 0 < k < ki, the summation is over all possible sequences
sequences X, d is the distance of A (19), and p,, is the
projection determined for N by X; (23). The probability P,
depends on error events associated with X, and can be
computed by the chain rule [16]. The probability that an
error event occurs at some time k and the symbol error
probability can now by upper bounded by taking the union
bound over the set of error events in the same way as in the
Viterbi algorithm [5]. By considering the most significant
contribution of error events preceded by a sequence of  — u
error-free steps (17), we obtain a term in an upper bound on
the symbol error probability

114, i m— |
0 [5 = ] RRTINY | L e

AEA 1
dmin

where |d*#, | is the minimum distance |d| (19) achieved by an
error event of the DDFSE trellis (when memory constraint is
u), and Agk is the set of error events which achieve the

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 5, MAY 1989

minimum distance. The term (25) can be thought of as an
upper bound on the symbol error probability in the absence of
decision errors preceding the start of an error event. In many
cases, it dominates an upper bound [16].

Note that in (25) we made the assumption that all error
events start at time 0. With this assumption, the distance of the
error event can be computed as

ILAD)eDN i+ 1]l = ILA(D)e(D)],]| (26)

where e(D) is the error sequence associated with the error
event of duration n, e(D) = ¢ + eD + -+ + e, D"},
m = deg (e(D)), [a(D)], = a(D) mod D = aqy + a\D
+ -+ a, | D?"!, and the squared norm of a(D), ||a(D)|?
= 3,42, Thus, for p = 0 (for zero-forcing, DF detector),
|[d%. | = fo, and for p = n < oo, |dn,.| is the minimum
distance of the Viterbi algorithm. An example of the above
analysis for an FIR channel is given in the next section.

Similar estimates can be obtained for infinite impulse
response channels (IIR) when we observe that the dependence
between two error events is negligible if they are separated by
a long sequence of error-free symbols. The term (25) also give
an upper bound when decision errors preceding the start of an
error event are ignored. Two IIR channels are also studied in
the next section.

For i.i.d., equiprobable and binary input sequences, an
upper bound on the symbol error probability of DDFSE (25) in
the absence of decision errors preceding an error event (i.e.,
ignoring the effect of error propagation) can be directly
compared to an upper bound on the symbol error rate of the
Viterbi algorithm [16] (if # is finite) and to the symbol error
rate of the zero-forcing decision-feedback equalizer in the
absence of previous decision errors (5). All three estimates are
expressed in terms of the Q-function (5) of the square root of
the effective SNR given by

V(SNRus) = |, |/(2VNo) @7

where the values of d#, are given by the minimum distances
of error events for the DDFSE and the Viterbi algorithm (26)
(denote the corresponding SNR.; as SNRpprsz and SNRy,),
and by | fp] for the zero-forcing DF detector (denote its SNR.s
as SNRpg). Note that SNRpr < SNRpprse < SNRy, where the
first equality holds when u = 0 and the second equality holds
when p = 7. When 7 is infinite, the Viterbi algorithm cannot
be implemented. In this case, it is still possible to find a lower
bound on the performance of any detector which is propor-
tional to the Q-function with an argument of the form (27),
[15]. As p grows to infinity, the value of SNRppgsg for such
channels approaches to the value of SNR in the lower bound
(see the following section for an example). Note that the effect
of error propagation is less severe for DDFSE then for the
zero-forcing decision-feedback equalizer, since the decision
feedback is delayed in DDFSE. Therefore, an estimate of
symbol error rate computed ignoring the effect of error
propagation (25) is closer to the actual error rate for DDFSE
then for the zero-forcing decision-feedback detector.

B. Examples—Simulations Results and Comparison to
Analysis

Example 1) Continued: Consider the specific FIR channel
SWD) = A1 — 1.5D + 0.5D? and an i.i.d. data sequence
with a binary modulation set X = {0, 1}.

First, observe that for 4 = 0 (the zero-forcing, DF
detector), (d9,)? = A2, foru = 1, (d. )* = A29/4, and for
u = 2 (the Viterbi algorithm), (d%,)? = A?5/2. Consider the
case p = 1. Assume that an error event starts at time zero. We
find that for the input error sequences

e(D)=*(1+D --- +D"), n=1 (28)
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Fig. 5. Example 1. A(1 — 1.5D + 0.5D? channel. SNR = 74%/8N,.

the squared distance is
d*=A%9/4. (29)

By computing the distance of any other error event [16], it can
be shown that (29) is the minimum squared distance.

An upper bound on the symbol error probability for p = 1
thus contains the term

iZ(nH)LQ 34 =3Q 34 (30)
271 = | 4VN, 4N,

which is due to error events preceded by an error-free step. An
upper bound on the bit error rate of the Viterbi algorithm, p =

2, is given by
30 AV10
4N, |

An estimate of the bit error rate of the zero-forcing decision
feedback equalizer, p = 0, made with the assumption that ail
previous decisions are correct is

(€2))

0(A/2VNy)). (32)

More complete performance analysis of the DDFSE in-
volves computing joint probabilities of error events (24). It
was carried out in [16]. The resulting upper bound was close
to an estimate (30).

The estimates (30), (31), and (32) are plotted along with
simulation results in the Fig. 5. The SNR denotes the signal-
to-noise ratio (in db) for the output sequence given by £ f2/
4N, = 7A?%/8N,. Note that the bit error rates of DDFSE and
the Viterbi algorithm are close and differ significantly from
the bit error rate of the zero-forcing decision-feedback
equalizer.

Example 2) Continued: Consider the analysis of the
performance of DDFSE for the one-pole channel (13) f(D) =
A/(1 — aD), where a = 0.9 with binary inputs X = {0, 1}.
A lower bound on the symbol error probability achieved by
any estimator for this channel is given by [15]

1 A
- Q| = . 33)
2 V2No(1+ @)

The error rate of DDFSE is estimated by considering finite
length error events. By inspection, we determine that the input
error sequences e(D) = *(1 — D) cause error events with
minimum squared distance |d¥ | = A2(1 + (1 — a)(1 —
a®*2)/(1 + «)). An upper bound on the bit error rate of the
DDFSE for high signal-to noise ratio thus contains the term
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Fig. 6. Example 2. One pole channel. ;4/(1 — 0.9D). SNR = A%/4N,
(1 - 0.9%.

due to error events preceded by a long sequence of error-free
bits

l-«a 172
1+—— (1 —a?++?)
0 ﬂ 1+«
2

No

For large u this estimate approaches an upper bound on the
performance of the Viterbi algorithm for the channel with

fD)=AY oD (34)

i=0

which agrees in the limit with a lower bound (33) up to a
constant factor. This factor usually appears when lower and
upper bounds on symbol error rate of the Viterbi algorithm are
computed [5]. It is possible to estimate other terms of the
upper bound by taking into account joint probabilities of error
events for this channel, but the effect of this analysis is not
significant.

The bit error rate of the zero-forcing decision-feedback
equalizer (¢ = 0) computed with the assumption that there is
no previous decision errors is given by

Q(A/VN,)). (35)

These bounds and simulation results are plotted in Fig. 6
against the output SNR = A42/(4Ny(1 — «?)) for the channel
with @ = 0.9. The estimate (35) differs significantly from the
performance of the zero-forcing decision-feedback equalizer
because of error propagation, but an estimate of the bit error
rate for the DDFSE is close to the true bit error rate. The
figure contains an upper bound on the bit error rate of the
Viterbi algorithm for large u for the channel with response
(34). The bit error rate of the DDFSE approaches this upper
bound as u increases.

Example 3) Continued: For the one-zero, one-pole chan-
nel with response (14) f(D) = A(1 — D)/(1 — aD) alower
bound on bit error rate of any estimator is given by Q(A/
V2Ny(1 + «)). The minimum distance is achieved by e(D) =
*1. An upper bound on the performance of DDFSE is

14 l-a (1 - )
— (-«

0 f l+a

2 Ny

The estimate of the performance of the zero-forcing decision
feedback equalizer is the same as for the one-pole channel
(35). The bounds and simulation results are plotted in the Fig.
7 against the output SNR = A2/(2Ny(1 + «)) for « = 0.6.
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Fig. 7. Example 3. One zero, one pole channel. A(1 — D)/(1 — 0.6D).
SNR = A2/2Ny(1 + 0.6).

VI. DDFSE FOR TRELLIS CODED MODULATION SYSTEMS

The DDFSE algorithm is applicable to a more general class
of channels that those described by the discrete time model (1).
In [1], the algorithm is presented for stationary Markov
channels. The updated version appears in [16]. We consider
trellis coded QPSK on a channel with intersymbol interference
as one example.

In trellis coded modulation systems, the set of allowable
data sequences is a proper subset of the set of sequences over
the modulation set X, a finite subset of complex numbers [12].
Such a code is typically described by an (n, k) binary
convolutional code (BCC) and an invertible mapping of binary
n tuples onto the modulation set g:{0, 1}" — X where | X| =
2". At time j, a random binary k tuple m; = (mj, mf, RN
m;‘) is accepted by the BCC encoder. The cotresponding
encoder output ¢; = (c}, cjz., **+, €}), a binary # tuple, is then
applied to the modulator resulting’in the channel input X;j =
q(c).

The channel input is a function of the current input and past
inputs x; = x(mj, m}_,, ---, mi_,, o, mb m o,
mj’.‘_yk) where »;, 1 < i < k, is called the memory length of
the ith input. The Viterbi algorithm requires 2 states to
decode such a code over a memoryless channel where the total
memory [14] v = v + - + p;.

If the trellis code is used over an ISI channel, then the
number of states of the Viterbi algorithm grows (it can be
infinite). The output of the channel is y(D) = f(D)x(D) +
z(D) where z(D) is zero mean complex white Gaussian noise
(i.e., its real and imaginary components are independent white
Gaussian processes with mean zero and variance Np), and
JS(D) is complex and causal and satisfies assumptions of
Section II. For the DDFSE algorithm, write the channel as in
(8), then note that the term Ju(D)x(D) can be computed by
setting u;, = (mj!_l, cee, mj‘._”v“, sy m;‘_l, RN mj’.‘_ur“).
This corresponds to a trellis with 27+ states. The definition
of the partial state v; is given by (11b) and the partial state
estimator, (i, v;) is determined from (10) and (11). The
branch metric for DDFSE is |y, — #|? where t, = DAIP >
+ Wi_,-1, and |x| denotes the amplitude of a complex
number x. Note that the algorithm requires storage and
computations in the field complex numbers. If u = 0, the
treltis of the DDFSE has 2 states and coincides with the
original trellis of the BCC. Note that in this case, if »; = 0 for
some /, the trellis of the DDFSE has multiple edges. The
branch metric in this case is a function of the input m ¥» Which

can not be determined solely from the state pair (s;_;, Sk).

Examples

The following code and simple one-zero and one-pole
channels illustrate issues involved in the implementation of the
DDFSE algorithm in trellis coded, ISI systems.
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Fig. 8. The (3,2) BCC.

110
Fig. 9. The mapping from the outputs of the BCC to the modulation set.
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Fig. 10. Example 4. Rate 2/3, 8-PSK system followed by a channel with
response I — 0.5D. SNR = A%/N,.

Consider the trellis code based on the (3, 2) BCC [12], [13]
encoder described by the circuit diagram given in Fig. 8. The
modulation set, X = {A4e™4 0 = k < 8}, of the trellis
encoder lies on a circle of radius A in the complex plane (this
is called the 8-PSK (phase-shift keyed) set). The mapping q of
binary 3-tuples ¢ is depicted in Fig. 9 and given by
3

; 1 2
Xj=x(mj, mi, m?_,, my_,)=q(c;) = Aei/Hde;+2¢+c)

(36)
) B 1 2 2 2 3 2
where ¢; =mj, ct = (mj + mj_z), ¢ = mj;_ (the last

addition is modulo 2). The total memory of this trellis code is
v=2r =0,r =2).

A. Example 4

For the first trellis code example, suppose the ISI channel is
given by f(D) = 1 — pD. Then the output of the channel y;
= X; — pXj_; + z;. The dependence of x; and x;_; on the input
is given by (36). The cascade of the encoder and the channel is
described by a finite state machine with state 5 = (m}_l,
m? , m?_,, m? ). This leads to a requirement of 16 states for
the Viterbi algorithm. Consider DDFSE based on a trellis with
4 states (u = 0). Take f(D) = f, + Df* where f, = 1, f+* =
—p. Let w(D) = f*x(D) = —px(D). Then y(D) = x(D)
+ Dw(D) + z(D). This representation allows a decomposi-
tion of the state s; = (m?2_, mjz_z, Xj-1) into u; = (mj?_,,
m? ) and v; = x;_,. The branch metric is |¥; — t;|* where ;
= X; + W;_y, and from (10) and (11), the partial state
estimator is given by §(u;, m!, mjz.) = X0 = x(m}, m?, u))
is determined by (36), and wio1 = —pv(w))).

Fig. 10 shows results of computer simulations for this
channel (p = 1/2). It gives error rates of the DDFSE and the
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Fig. 11. Example 5. Rate 2/3, 8-PSK system followed by a channel with

response 1/(1 — 0.5D). SNR = A%/N,.

Viterbi algorithm along with two other detection schemes
involving decision feedback equalization (DFE). The SNR is
defined as the ratio A2/N, (db). The first scheme is a
combination of a decision feedback equalizer with Viterbi
decoding with 4 states. The DFE is applied to the output y; and
produces a decision £, using previous decision £;_;. It has a
forward filter w(D) = 1 and a feedback filter b(D) = —pD.
The quantizer produces the decision £; in X which is the
closest to the estimate X; (on the complex plane). The estimate
% at the input to the quantizer is applied to the Viterbi
algorithm which operates in the same way as for the
memoryless channel (in the figure, this scheme is called ‘*‘DFE
and VA’’). The second scheme is the same as the first, except
decisions produced by the DFE are correct (‘‘ideal DFE and
VA”). The ideal DFE produces the same output as a
memoryless channel with f(D) = 1, and thus has the same
error rate. Note that performances of DDFSE and this scheme
are close, and their trellises look the same.

B. Example 5

The second example corresponds to the same trellis code as
in the previous section and to a channel model with the transfer
function f(D) = 1/(1 — aD) where 0 < o < 1. The DDFSE
algorithm with a memory constraint u is described in the
Section IV-C (in Example 2, set A = 1). For this channel, the

: — 1 ... 1 2 . 2 .
state is §5; = (mlf'l’ s mxj“" mz;';l’ , mzi_“_z, Wi_u-1)-
Thus, u; = (’",;p Tr,mp_ L, me e, ’",-_,‘_2) and v; =

wj_,-1. The partial state estimator is given by 0(u, vy) =
a**lx;_, + avg. The DDFSE algorithm is based on trellis
with 22+2 states.

The performance of DDFSE for 4 = 0, the DF equalizer
(DFE) and ideal DFE (both combined with the Viterbi
algorithm for the memoryless channel) for « = 1/2 are
plotted in the Fig. 11 against the SNR = A2/N; (db). Again,
note that the performance of ideal DFE (which is the same as
for the trellis code on the memoryless channel) is close to the
performance of DDFSE.

VII. SUMMARY AND CONCLUSIONS

We described the delayed decision-feedback sequence
estimation (DDFSE) algorithm. The algorithm combines
structures of the reduced-state Viterbi algorithm and a
decision-feedback detector and provides a tradeoff between
complexity and performance. We studied the application of the
algorithm to the detection of signals transmitted over finite and
infinite response intersymbol interference (ISI) channels. The
performance of DDFE was estimated analytically and using
computer simulations. The error rates of the algorithms for
several channels were compared for various complexities. The
performance of the DDFSE algorithm was shown to converge
rapidly to the performance of the maximum-likelihood se-
quence estimator as its complexity grew.
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We also considered the application of DDFSE to detection
of coded signals over ISI channels. Computer simulations for
trellis-coded QPSK system and two different channels showed
that performances of the low complexity DDFSE algorithm
and the ideal decision-feedback detector were close and
signficantly exceeded the performance of the standard deci-
sion-feedback detector.
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