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Abstract—Receivers for wireless local area networks based on
the IEEE 802.11b standard are required to operate well in heavy
multipath, as well as additive noise impairments. This paper dis-
cusses a practical approach to combined equalizing and decoding
for IEEE 802.11b systems, based on the Fano sequential decoding
algorithm. Simulation results are presented demonstrating the
greatly improved performance attained using this algorithm to the
performance obtained using separate equalization and decoding
blocks. This method has been implemented in TI’s ACX100 chip.
Measured laboratory results are presented that demonstrate
superior throughput results obtained from this device compared
with throughputs obtained by competitive devices available on the
market.

Index Terms—Equalization, Fano decoding, wireless net-
working.

I. INTRODUCTION

T HE IEEE 802.11b standard specifies a physical layer trans-
mission system that transmits packets of information in an

Ethernet type network. The standard specifies three basic forms
of modulation coding, Barker code (1- and 2-Mb/s payload data
rate), CCK (5.5 and 11 Mb/s), and packet binary convolutional
coding (PBCC) (5.5 and 11 Mb/s). The latter modulation was
proposed and developed by Alantro Communications, now a
part of Texas Instruments Incorporated. All of these forms of
modulation, as well as a 22-Mb/s PBCC extension, are imple-
mented in the ACX100 chip offered by Texas Instruments (TI).
(This high-rate PBCC mode is scheduled to be a part of the up-
coming IEEE 802.11g standard.)

While there have been several descriptions of the transmitted
signals that are part of the IEEE 802.11b specification and the
ACX100 chip [1], [2], a description of the novel receiver struc-
tures of the ACX100 chip have not been published. This paper
presents an overview of a key component of the receiver, namely
the combined equalizer and decoder.

There are two main issues in the robust detection of a packet
in a wireless local area network (WLAN) system: noise and
multipath.
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The main source of noise can be attributed to the radio fre-
quency (RF) front-end or the “radio.” The signals that impinge
on the antenna at the receiver are exceedingly small and must
be significantly amplified in order for the baseband processor
to detect the message contained in the received signal. This am-
plification process introduces distortion on the signal, which
for a properly designed radio, will consist mainly of noise that
is modeled as additive white Gaussian noise (AWGN). In an
ideal wireless transition system, as depicted in Fig. 1, the mes-
sage to be transmitted would be transformed into a base-
band signal belonging to the set of signals known as the
signal set, codeword set or codebook. This signal is modulated
to the proper carrier frequency and transmit level by the transmit
radio and broadcast via the transmit antenna. At the receiver,
the signal that appears on the receive antenna is amplified and
translated to baseband for processing by the baseband processor
that performs the message detection (i.e., decision). The base-
band processor, observing the signal uses
the knowledge of the transmitted signal set, along with the
characteristics of the noise in order to make an accurate
decision. For example, in AWGN, an optimal receiver would
find the signal in the known signal set that is closest to the
received signal in terms of signal energy.

However, realistic indoor environments, which have many re-
flective surfaces, are modeled by a more involved process than
that shown in Fig. 1. A significant amount of signal distortion
can occur due to the phenomenon known as multipath. In multi-
path environments, the signal observed at the received antenna
is the sum of a variety of reflections of the transmitted signal.
These reflections have a host of signal gain and delay param-
eters so the the received signal is smeared, or filtered, by the
multipath channel. This is shown schematically in Fig. 2.

The process of undoing the effects of multipath is known
as equalization, while the processing to compensate for the
code is known as decoding. These processes may be carried
out separately, and there are several different known strategies
for doing so. Each, however, has performance disadvantages.
As discussed in more detail in the theory section of this paper,
the equalization and decoding processes require different
strategies.

The theoretical development required to consider combined
equalization and decoding has long been known. The perfor-
mance of such a receiver is optimal; the remaining problem is
one of receiver complexity. A straightforward implementation
of the optimal combined equalization and decoding structure is
far beyond the bounds of practicality. Essentially, the combi-
nation of code plus multipath forms a “supercode” consisting
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Fig. 1. Signal plus noise without multipath.

Fig. 2. Signal plus noise with multipath.

of a much larger number of states, and correspondingly larger
complexity.

The approach taken in the ACX100 is to construct and decode
the full combined equalization and decoding “supercode,” but to
achieve a practical solution by using the classicalFano sequen-
tial decoding algorithm[3]. The Fano algorithm was originally
developed and extensively explored in the 1960s as a method
for decoding convolutional codes containing very many states.
The algorithm has at any given time one possible set of partially
decoded data, which is continually altered and updated. The al-
gorithm may backtrack and undo previous tentative decisions,
as well as adding new tentative decisions. An ingenious set of
update rules ensure that the Fano algorithm searches the data ef-
fectively. As there is at any time just one tentative set of partially
decoded data, the complexity of the algorithm is very low.

Although the Fano algorithm was developed for convo-
lutional codes, it may easily be adapted to decoding block
codes, intersymbol interference (ISI), and in particular, any
combination of block codes and ISI: these combinations can be
thought of as producing time-varying convolutional codes.

In a recent (1998) special issue celebrating the 50th anniver-
sary of the publication of the landmark paper of Shannon [4],
the IEEE TRANSACTIONS ONINFORMATION THEORY published
an article by G. D. Forney, Jr. and G. Ungerboeck titled “Modu-
lation and Coding for Linear Gaussian Channels.” In this paper,
it is stated [5]:

“In view of [this list of] desirable properties, it is something
of a mystery why sequential decoding has received so little
practical attention during the past 30 years.”
This paper describes how a sequential decoding approach

to combined equalization and decoding is achieved. The paper
considers three aspects of the problem: theory, simulation, and
practice. In the theory section, an overview of the problem is
presented and analyzed. In the simulation section, the perfor-
mance of the approach is compared with alternatives. Finally,
data gathered at our offices from actual hardware is presented.
The data shows the robust nature of a combined equalizer de-
coder implementation. Finally, we end the paper with a few ob-
servations, conclusions and closing remarks.

II. THEORY OFCOMBINED EQUALIZATION AND DECODING

Many important and practical codes used in wired and wire-
less communications system can be described via the notion of
a finite-state machine (FSM). The notion of a FSM also models
in a natural waymultipath distortion, which is a major issue in
wireless system design.

Data that is encoded and then sent across a channel in which
there is multipath distortion, thus passes through two FSMs. The
combined effect of this transformation is equivalent to that of
another (composite) FSM. The aim of combined equalization
and decoding is to build the receiver so that the composite FSM
is decoded. This performs the entire receiving procedure in one
step.

In this section, we review the various relevant facts on FSMs,
codes, multipath, and suitable decoding algorithms.

A. FSMs, Trellises, and Trees

A FSM is characterized by a (finite) set of states, an input
alphabet , and an output alphabet, together with anoutput
rule and anext staterule. The output rule deter-
mines the output when the FSM is in state and
the input is . The next state rule deter-
mines the state at the next time unit given input and
current state .

Two common ways of representing the action of a FSM in the
context of channel coding aretrellisesandtrees.

A trellis is a labeled, directed graph, in which each vertex
has an associated time index. Vertices with the same time index
are grouped together, and edges go only from a vertex at one
time index to vertices at the next time index. The action of a
state machine can be represented by a trellis by taking the set
of vertices at a given time index to be the set of possible FSM
states at that time index. If the FSM can pass from stateat
time to state at time , then the trellis at time contains
a directed edge from state at time to state at time .
Various conventions are taken for the label attached to the edge;
one straightforward convention is to label the edge with the FSM
output corresponding to that state transition.
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Fig. 3. BCC as a FSM.

A tree is a directed graph in which each vertex has at most
one incoming edge. A tree representing an FSM has the same
grouping of vertices into time indices as in the case of a trellis.
In the case of a tree, there is a separate vertex for each possible
sequence of FSM inputs. The edge connection and labeling con-
vention is otherwise identical to the trellis.

In the case of both trellises and trees, the number of edges
out of a state (vertex) equals the number of possibilities for the
input at that time unit.

B. Codes as FSMs

1) Binary Convolutional Codes (BCCs) as FSMs:The most
familiar example of an FSM representation of a code is the bi-
nary convolutional code BCC. In a BCC, binary data is encoded
by passing the binary message stream through a linear, time in-
variant, filter with binary inputs and binary outputs
(see Fig. 3).

Taking the most common situation in which and
and an finite-impulse response (FIR) encoder with memory,
the BCC is a FSM in which the input alphabet , 1,
the output alphabet , the state consists of
the past inputs, the output rule chooses the two output coded
bits according to the FIR filter input and the pastinputs. The
next state rule is the simple one of

, i.e., at the next time unit the state
consists again of the lastinputs.

For example, consider the four-state , ( , )
BCC described by the equations

or, in terms of a FSM description

as shown in Fig. 4.

C. Block Codes as FSMs

Linear block codes (LBCs) may also be described via trellises
and trees. The trellis description of block codes goes back to
Forney in 1974 [6], and was the subject of much research in the
1990s [7], [8].

Fig. 4. An example of a four-state, rate 1/2, BCC.

Fig. 5. The CCK-11 trellis.

In the case of LBCs, the number of states and the next-state
update rule are more complicated than in the case of BCCs. One
out of many equivalent ways of defining a trellis for a LBC is to
take any parity check matrix for the code, and to define the set
of states at a given time indexto be the set ofpartial syndromes
of codewordsat that time index. Here, the partial syndrome of
a codeword is defined as

, where is the th column of the matrix. Note
that the th “partial” syndrome is the ordinary syndrome of
the entire codeword; hence, the terminology. The trellis is then
constructed by following the path of possible codewords: e.g.,
there is an edge between the state at time,

, and the state at time ,
, for all codewords . The edge is labeled

by .
In this method, the trellis may vary according to thematrix

that has been chosen. Efficient methods for choosing a good
parity check matrix, i.e., of finding a minimal trellis for a LBC
given any generator matrix or parity check matrix, are known
[8].

Unlike the regular time-invariant structure of a BCC, the min-
imal trellis of an LBC has a number of states, edges and out de-
gree that usually vary along the length of the block. The block
code is described by a trellis that starts in a single state, ex-
panding and contracting along the course of the blocklength, fi-
nally returning to a single state at the end of the block. The trellis
description for a frame of LBC data is obtained by concatenating
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Fig. 6. The CCK-11 tree.

Fig. 7. The CCK-5.5 tree.

Fig. 8. The CCK-5.5 trellis.

the block code trellis into a series of trellises. The resulting con-
catenated trellis is a periodic trellis with a period that is equal to
the blocklength.

The IEEE 802.11b standard specifies two LBCs of block-
length for 11 and 5.5 Mb/s transmission, as described
in [1], [2]. The higher rate code, CCK-11, has a trellis shown
in Fig. 5. This code starts in single state and expands for
three steps into 4, 16, and 64 states each with four-way
branching . The trellis contracts to 16 states with
one-way branching , expanding again to 64 states
with four-way branching . The remaining three steps
contract the number of states to 16, 4, and finally back to
one-state with one-way branching . In terms of a
tree description, a typical path is illustrated in Fig. 6. One
can observe that while progressing through the tree, the in-
formation is distributed according to a pattern of information
rates bits; this pattern is repeated as
a frame of data is encoded or decoded.

The lower rate code is the CCK-5.5 LBC. This code
has a trellis shown in Fig. 8. In this case, the tree has a

information rate pattern (Fig. 7).

Fig. 9. The two-term QPSK FIR-ISI channel.

D. Multipath Channels as a FSM

FSMs can also be used to describe a FIR ISI channel with
AWGN. The model is very important for wireless systems, such
as IEEE 802.11b, since this accounts formultipath distortion.
In this model, the output of the channel is described as a linear
FIR filtering of the input signal followed by a memoryless noise
channel [9], [10]. When the input signal set, called thesignal
constellation , is a finite set, then the FIR filter can be ex-
pressed as a FSM. This realization is the basis for the combined
equalizer/decoder described in this paper.

The FIR-ISI channel is described in terms of:

1) a finite input signal set or constellation;
2) an FIR impulse response, often described by a polynomial

of degree (the number
of terms is );

3) a statistical model of the noise sequence.
The FIR-ISI channel is, thus, composed of two parts: the FSM

component (items 1 and 2), followed by the additive noise model
(item 3).

The FSM maps the input sequence to
the output sequence via

(1)

As a FSM, this is fully analogous to the BCC discussion in
Section II-B. The additive noise then adds, giving the overall
FIR-ISI channel

(2)

As an example (see Fig. 9) consider an FIR-ISI channel model
with a channel input taking on values in the quadra-
ture phase-shift keying (QPSK) signal set,
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Fig. 10. The trellis for the two-term QPSK FIR-ISI channel (see Fig. 9).

Fig. 11. The tree diagram for the two-term QPSK FIR-ISI channel (see Fig. 9).

, with two multipath terms,
, where is a complex multipath gain, and ad-

ditive noise consisting of independent, identically distributed
complex Gaussian random variables with mean 0 and vari-
ance . (Thus, the real and imaginary parts ofare iid
Gaussian random variables with mean zero and variance).

In this example, the input at time consists of the QPSK
signal , the state consists of the QPSK signal from the pre-
vious time unit, , and the output of the FSM is given by.
Thus, there are four states at each time unit other than the first,
corresponding to the four possibilities for . The tree has a
four-way branching structure at all time units, corresponding to
the four possibilities for . The trellis section at all time units
other than the first consists of 16 branches, to connect every pos-
sible state at time to every possible state at time.

A schematic for the trellis section with 16 branches
is shown in Fig. 10 and a tree description

is depicted in Fig. 11.

E. Combined Code Plus Multipath as a FSM

It is an easy exercise to prove that the cascade of two FSMs
is itself a FSM where the number of states is at most equal to
the product of the number of states of the two FSMs. For ex-
ample, consider the cascade of the convolutional code in Fig. 4
with the FIR-ISI channel in Fig. 10. We arrive at the following
FSM:

where the QPSK mapping is given in Table I. The FSM
model has a binary input , a complex output and a
state . Thus, there are eight states,
corresponding to the eight possibilities for .
The tree has two-way branching, corresponding to the two

TABLE I
QPSK MAPPING

possibilities for the input ; note that the composite FSM in-
herits the two-way branching of Fig. 4 rather than the four-way
branching of Fig. 10. The trellis section at timeconsists of
eight states at time connected to eight states at time ,
with two edges leaving every state.

It is interesting to note that the number of states of the cas-
cade, in many practical situations, is less than the upper bound.
Generalizing the example above, a ( , ) BCC with
state length has states, an FIR-ISI channel with
terms and QPSK inputs has states. If the bi-
nary outputs of the BCC are mapped onto QPSK symbols in
a one-to-one correspondence and then used as the input to the
FIR-ISI channel, then the cascade has states, rather than

.
When a LBC is used over a multipath channel, the combi-

nation of encoding and channel filtering can be described by
a combined trellis. In this case, the number of states of the
combined trellis will vary periodically with a period equal to
the blocklength. In general, the number of states at the begin-
ning/ending of a code block will be more than 1 reflecting the
ISI that will force a dependency between the blocks of the LBC.
However, from a tree point of view, the branching degree

will be the same. For example, the diagrams in Figs. 6 and 7
will remain the same with multipath filtering of the LBC coded
signals.

F. Detection/Decoding of FSMs Over a Memoryless Channel

Many different approaches can be taken to decoding the
composition of code and multipath. These possible approaches
trade performance and complexity. In this section, we review
the various possibilities, seeking to show how each fits inside
the overall context of the FSM descriptions of the overall
code-plus-multipath system.

In Section II-F1, we consider the optimal decoding of the
composite system, via the Viterbi algorithm (maximum-likeli-
hood (ML) sequence estimation). At the other end of the com-
plexity spectrum, we consider decision feedback equalization
followed by decoding of the code alone. Finally, we consider
the use of the Fano sequential decoding algorithm.

1) The Viterbi Algorithm: Viterbi discovered an optimal
method for decoding BCCs over memoryless channels [7],
[11]–[13]. Shortly after the discovery of the Viterbi algorithm
it was realized [9], [10] that the Viterbi algorithm could be
applied to other communications problems where the transmis-
sion system involves a FSM description, including the FIR-ISI
model for multipath distortion. The discovery that the Viterbi
algorithm also applied to LBCs also dates, as noted earlier,
to approximately the same time. More generally, the Viterbi
algorithm applies to, and is an optimal decoding algorithm for,
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any code or model transmitted over a memoryless channel.
The decoding complexity of Viterbi decoding is dominated by
the maximum number of states that occurs at any stage of the
trellis.

In one sense, this observation solves the problem of combined
equalization and decoding: the optimal solution is to form the
composite FSM and to decode it via Viterbi’s algorithm. The
sole problem with this approach is that the complexity can be
prohibitive. For example, in the context of IEEE 802.11b sys-
tems, in decoding a CCK-11 packet that has been transmitted
over a multipath channel with memory 8, the decoding algo-
rithm has to handle states, which is unrealistic in
almost all applications.

2) Decision Feedback Equalization:At the low end of com-
plexity is the decision feedback equalizer (DFE). This method
is much simpler than Viterbi detection, but can suffer consider-
able performance loss, especially when dealing with data that
has been coded.

In the usual DFE approach, the equalizer attempts to com-
pensate for the effect of the multipath distortion only, and then
(if the data has also passed through a channel code) feeds the
equalized symbols to the channel code decoder.

To compensate for the effect of the multipath distortion, the
receiver recursively estimates the current symbol, and from this
and previous estimates, plus knowledge of the channel-impulse
response , computes what the multi-
path distortion impact at the next received symbol will be. This
estimated multipath distortion is then subtracted from the next
received symbol, leaving the actual symbol plus additive noise.
The receiver makes its best estimate of that symbol and the
process repeats.

Note that the DFE works well as long as each individual
symbol estimate is correct: if all previous symbol estimates were
correct, the next decision is “locally optimum.” However when
an incorrect estimate occurs, the DFE miscompensates at the
next symbol, i.e., forms

and this error is present for a window ofconsecutive symbols.
This makes it more likely that another decision error occurs soon
after the first, which in turns triggers more miscompensation,
and so on. This leads to the “error propagation” problem that is
often associated with the DFE method.

The problems of a separate DFE and decoder illustrate the
central dilemma of building a receiver for a channel corrupted
by both multipath distortion and noise. On the one hand, the
channel code is designed to compensate for the additive noise,
and is necessary in those conditions in which the noise level
is high enough that individual decisions on symbols are unre-
liable. It is well known that decoders operate best when “hard
decisions” are not made, but rather when they are fed “soft de-
cision” information. On the other hand, the DFE operates pre-
cisely by making hard decisions on a symbol-by-symbol basis;
it needs to do this in order to be able to subtract out the multipath
at subsequent decision points. Thus, the two approaches are not
well suited to each other. In practice, the approach of DFE fol-
lowed by channel decoder works only when the noise level is so
low that the channel code is essentially not needed.

G. Search-Based Decoding

After the advent of BCCs, much effort was expended in devel-
oping methods for decoding errors at the receiver in a BCC en-
coded data stream. Much of the early successful work involved
tree searching algorithms, an area that is now commonly known
as sequential decoding. Many variants of sequential decoding
have been developed, including the stack algorithm and Fano
decoding.

In all of these algorithms, the tree representation of the FSM is
used. In a sequential decoding algorithm, the decoder attempts
to follow promising paths through the code tree, and continu-
ally monitors the quality of the path currently being followed.
As long as the path appears to be correct, as judged via some cri-
terion, the search continues along that path. When a wrong turn
occurs, the possible extensions to the current path all become
substantially different to the received signal, and the decoder
should soon decide that the path is probably incorrect. When
this happens, another path is chosen.

The precise implementation of this general idea varies among
the different sequential decoding algorithms. In the case of stack
algorithms, a list of possible paths is maintained and an alterna-
tive path is considered once the current path looks problematic.
The Fano algorithm is implementationally simpler, though con-
ceptually slightly more involved. The Fano decoder maintains
only one path; when the current path is judged to be incorrect,
the decoder is allowed to step back one time unit on that path.
The algorithm has an associated decoder action flowchart that
ensures that the decoder can never go into an infinite loop.

1) Advantages and Disadvantages of Sequential De-
coding: The history of sequential decoding provides an
interesting example of the role of varying applications and re-
quirements on communications theory, and the role of fashion
in communications theory in influencing communications
practice. The various algorithms in the sequential decoding
family were throughly studied in the 1960s, and much insight
into their properties was developed. The algorithms fell into
disuse, however, after the advent of Viterbi decoding in the
early 1970s.

The main differences between the two methods can be
summed up as follows.

1) Viterbi decoding takes a deterministic time, while sequen-
tial decoding takes a variable amount of time; the compu-
tation time of a sequential decoder rises in noisier condi-
tions.

2) Viterbi decoding is ML, while sequential decoding is not
guaranteed, even when decoding completes, to choose the
most likely path.

3) Sequential decoders have much smaller complexity than
Viterbi decoders.

The main situation in which Viterbi decoders have an advan-
tage is in the first item; in practice the nonmaximum-likelihood
results from a sequential decoder are almost always due to ex-
cessive computation time leading to buffer overflow. For a com-
munication system involving continuous data streaming, how-
ever, this feature of variable computation time and buffer over-
flow is serious as without further mechanisms to restore syn-
chronization, the system will continue to make errors; typically
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the encoder needs to send known retraining data periodically.
For such a system, therefore, there are attractions to choosing a
code that has a small number of states by design, and decoding
it with the Viterbi algorithm.

Note that this scenario has little in common with the sit-
uation in IEEE 802.11b wireless LANs. First, the system is
packet-based, with each successive packet standing on its own
as a coded entity; thus, known retraining is not an issue. Sec-
ondly, the codes standardized for IEEE 802.11b are not espe-
cially strong, particularly the mandatory CCK-11 and CCK-5.5
codes. Thus, the receiver operating points are relatively far from
the “cutoff rate” region, i.e., the channel conditions are rel-
atively quiet and the average amount of computation is low.
Thirdly, the complexity of Viterbi decoding of the composite
code-plus-multipath system is excessive; as we have no control
over the amount of multipath introduced by the channel, we do
not have direct control over the number of states required by
such a Viterbi decoder. The complexity of the sequential de-
coder is essentially independent of the complexity of the com-
posite code-plus-multipath channel. Finally, the system needs
to be able to decode a FSM that will not be known until recep-
tion of the packet, as the multipath will not be known until then.
This implies that a configurable decoder structure is needed. The
Fano algorithm is well suited to this.

2) Path and Branch Metrics:A memoryless channel is often
described in terms of a conditional probability

that describes the distribution on the observation variablecon-
ditioned on the input variable. The channel is memoryless if
the output at time , , is independent of the channel’s inputs
and outputs at other times given the input at time, . In search
based decoding, the received sequence is sequentially compared
with a path in the tree corresponding to a state sequence of the
FSM. Typically, abranch metricis used as a measure of the
closeness of the fit between the received symbol and the transi-
tion on a given branch. A typical branch metric for a memoryless
channel is thelog likelihood metric

where is the FSM output that corresponds to the inputand
the state as in Fig. 3. In the case of AWGN, the metric can take
the form

which describes the energy difference between the channel input
and the channel output.
In sequential decoding, a modified metric is used. The mod-

ification enables the decoder, in effect, to compare paths at dif-
ferent depths in the tree. The most usual form of metric is of the
form

Fig. 12. The Fano algorithm.

or

where is the number of possible inputs (i.e., for “random”
data, each input has uniform probability ) and is the
marginal distribution for the channel output. For example, for
the BCC encoder in Fig. 3, while for the FIR-ISI channel

( in Fig. 9). This metric is known as the
Fano metricand is explained by Massey in [14].

3) Fano’s Sequential Decoding Algorithm:While Fano’s
algorithm has been widely described, we briefly describe a
variation of the algorithm that is novel and compactly pre-
sented. The basic algorithm is presented in Fig. 12 and Table II.
The low implementation complexity can be seen from the
two-state five-branch description of the algorithm. Part of the
simplicity and efficiency of this approach involves the notion of
a “sideways” look. The “look back” part of Fano’s procedure
is agumented by the consideration of a sideways move. At any
given time, it is an invariant that the path-metric, .1

At a given state of the tree, thebranches are sorted according
to the branch metrics .
Note that with the Fano metric some branch metrics will be
negative in general. Thebest branchis the one identified with

. Also note that the number of branches,, is constant
for a BCC such as that used in PBCC while it is periodically
varying for a LBC such as CCK, as described in Section II-C.
The information rate for the Fano metric . A
sideways move can occur when the algorithm is looking
back along a branch that is not the last (i.e., not ) as
described in Step 3, Fig. 12, and Table II.

III. A PRACTICAL COMBINED RECEIVER

This method has been used in TI’s receiver design for IEEE
802.11b wireless local area networks. It has proven to be an
effective receiver with a practical implementation complexity.

In the realization of the technique in practice, an estimate of
the channel response must be made at the receiver and given to
the search based decoder for the detection process. In a packet
based system, the estimate can be made on the preamble of the
packet and presented to the decoder before the data portion of
the packet is to be processed. In addition, an adaptive equalizer

1In the usual description of Fano’s Algorithm, two values are maintained, the
path-metricand thethreshold; the invariant is that the path-metric must always
be as large as the thresold. In practice, it is more convenient to maintain only
the difference between the path metric and the thresold. This isM .
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TABLE II
FANO ALGORITHM STEPS

can be used to maintain the validity of the estimated FIR equal-
izer impulse response over the duration of the entire packet.

A. High-Level Outline of Receiver

1) An estimate of the impulse response is estimated
from the packet preamble.

2) The impulse response and the trellis code description is
presented to the decoder.

3) The search based decoder detects the data based on the
impulse response and the trellis code.

4) An adaptive equalizer is used before the decoder to main-
tain the channel model, , presented to the decoder.

These steps are implemented as follows.

Step 1) The incoming received samples are fed into an adap-
tive FFE/DFE structure. The feedforward equalizer
(FFE) is a fractionally spaced equalizer, de-
signed to eliminate the precursor ISI [15]. The DFE
is -spaced. The FFE and DFE are both trained
on the preamble, via a standard least-mean-square
(LMS) algorithm. As the preambles in IEEE 802.11b
are relatively generous in length (192s for the
mandatory long preamble, 96s for the optional
short preamble) it is easy to get convergence.

At the end of the preamble, the FFE and DFE
coefficients are frozen.

Step 2) Presentation of data plus model to the decoder.
The key point is that the data to be presented to
the decoder is tapped off after the FFE but without
being filtered by the DFE. The FFE block filters
the received signal to eliminate the precursor ISI;
assuming it does so, the resulting system has the
form of (1), in which the coefficients
embody the postcursor ISI.

The purpose of the DFE block is to estimate these
ISI coefficients. In the normal operation of a DFE,
the data is filtered by the transfer function

and, in the absence of decision and channel estima-
tion errors, this cancels the postcursor ISI exactly. It
follows that the idealized DFE transfer function sat-
isfies . In practice,
the receiver should take the adaptively computed co-
efficients as its best estimate of the coef-
ficients . These coefficients are the ones
fed to the decoder.

In this approach, the function being carried out
by the adaptive computation of the DFE ischannel
identification rather thanequalization; as noted by
Benedettoet al. [16, Ch. 8], these two functions are
in form very similar.

Step 3) The decoder forms the composite trellis corre-
sponding to the concatenation of the code (CCK
5.5, CCK 11, PBCC 5.5, PBCC 11, or PBCC 22)
with the estimated multipath distortion channel
given by the coefficents in Step 2. The resulting
trellis is decoded via the Fano algorithm.

IV. SIMULATION RESULTS

A. Channel Model

Consider the following discrete time channel model. The
input to the channel is given by complex baseband signal
represented by , where is the time index (samples). The

’s are the output of the channel coder. The output of the
channel is represented as. For a multipath that spans
terms, the received signal can be represented as

where is the complex scalar representing the gain and phase
of path and the ’s form a sequence of complex iid Gaussian
random variables with mean zero and variance.

For each path, the gain is given by and the phase is given
by the angle of the complex gain.
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Fig. 13. AWGN performance.

In each simulation, the path with least delay is chosen to be
the strongest and is normalized to 0 dB. The gain of other paths
are specified as the fraction of power relative to the first path.
Once the gains of all the paths are chosen they remain constant
for every instantiation of the channel. The phase is varied for
each instantiation of the channel and is chosen to be a uniform
random variable in the range .

The signal-to-noise ratio (SNR) of a received packet is calcu-
lated as

The parameter is set to provide the desired SNR.

B. Performance Results

In this section, we provide some simulation results that high-
light the performance of the Fano algorithm in various channel
conditions. We compare the performance of the following three
decoding methods: 1) ML joint equalization decoding; 2) se-
quential joint equalization decoding; and 3) equalization fol-
lowed by decoding. In all cases, perfect knowledge of channel is
assumed. In each simulation, packets with a payload of 1000 B
are transmitted and the packet error rate is measured as a func-
tion of SNR. The performance is measured at a packet error rate
of 10 .

Fig. 13 shows the performance in AWGN (no multipath) of
ML decoder and the sequential decoder for the three modulation
modes CCK-11, PBCC-11, and PBCC-22. It should be noted
that in absence of multipath, combined equalization decoding,
and equalization followed by decoding are identical as there is
no equalization that needs to be done. It can be seen that the
loss by using the sequential decoder is typically a fraction of
a decibel (less than 0.5 dB) and is constant across the modula-
tions.

Figs. 14–19 compare the performance for the three decoding
methods for CCK-11, PBCC-11, and PBCC-22, respectively, in
a multipath channel specified in Table III.

Fig. 14. Multipath performance.

Fig. 15. Multipath performance.

It should be noted that the complexity and memory require-
ments of ML joint equalization decoding makes the simulation
of a channel model with more than 3 rays difficult.

Clearly, the Fano algorithm performs well across the range of
modes.

V. RESULTS IN PRACTICE

A. Measured Performance

At Texas Instruments in Santa Rosa, CA, indoor range/rate
testing is performed at 21 test locations as shown in Fig. 20.

A fixed station or access point is placed on a shelf mounted
to a wall labeled “AP” in the figure. A roaming station is placed
at all test locations and throughput is measured and recorded.
Multiple test locations at the same distance are used to get an
average range/rate performance under varying channel condi-
tions. The test locations vary in distances from 17 to 129 ft and
their distribution over distance is as in Table IV.
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Fig. 16. Multipath performance.

Fig. 17. Multipath performance.

1) Summary of Experimental Results:Table V shows a plot
of average net rate (throughput) versus range for two 802.11b
stations operating in an ad hoc network for cards based on the
algorithm discussed in this paper versus two popular competi-
tors. This plot shows consistent throughput advantage for the al-
gorithm presented here over the alternatives at all ranges, with
the advantage increasing with increasing range.

A rough measure of the average throughput delivered to a sta-
tion card at any point within 129 ft can be obtained by forming
a weighted sum of the throughput at each point on the curve in
Fig. 23, that is

where and the ’s are
the rates achieved at these distances.

2) Test Repeatability:The concern of any test fixture is to
ensure repeatability to validate the test results at any given time.

Fig. 18. Multipath performance.

Fig. 19. Multipath performance.

TABLE III
MULTIPATH TERMS

There are two key areas of concern in this regard:signal inter-
ferenceandsensitivity to orientation.

Since testing is conducted in the open environment and not
in an anechoic chamber, the test environment is subject to in-
terference from other transmitters in the 2.4-GHz ISM band. To
mitigate the effects of interference, testing is conducted in the
middle of the night where interference is minimized. Scanning
for other 802.11 transmitters is also conducted before testing oc-
curs to ensure no other 802.11 network is active during the time
testing is taking place.

Given the fading conditions, the test is also sensitive to place-
ment of the roaming station including its orientation. To mitigate
this, a slow moving turntable is used to rotate the station while
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Fig. 20. Test locations at Texas Instruments, Santa Rosa, CA.

TABLE IV
TEST SETUP DISTANCES

TABLE V
AVERAGE RATE ADVANTAGE OF PBCC-22

throughput measurements are being conducted. This ensures
that the receiver moves through local flat fades that are present
in the environment, as well as moving the antenna through all
possible angles. Markers are also placed on the floor to ensure
the same test location is used for all tests.

3) Test Data Collection:Throughput is measured using a
readily available tool often used by customers of WLAN called
WAR FTP which is easily downloadable from a web location.
Version 1.65 is chosen for the data presented in this paper. The
fixed station or AP is configured as the “server” and the roaming
station is configured as the “client.” At each test location, puts
to and gets from the server are conducted on a 10-MB file con-
sisting of random data. Three measurements of puts and gets are
taken at each location. Table VI provides a partial example data
set for 22 Mb/s.

The data is then averaged over location and converted to
mega-bits-per-second (Mb/s) as shown in Table VII. The data
is then averaged over range to produce the final rate versus
range curve as shown in Fig. 23.

TABLE VI
EXAMPLE DATA RECORD: ACX100 PBCC-22, LONG PREAMBLE

TABLE VII
AVERAGE DATA RECORD: ACX100 PBCC-22, LONG PREAMBLE
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Fig. 21. ACX100 CCK-11 Mb/s average puts and gets over location.

Fig. 22. ACX100 PBCC-22 Mb/s average puts and gets over location.

4) Test Results:The following provides test results between
two stations configured in ad hoc mode collected using the test
method described in Section V-A3. Fig. 21 shows FTP puts to
and gets from the FTP server for TI’s CCK-11 PCcard solu-
tion versus test location number. These results indicate robust
transmitter/receiver performance in a real WLAN environment
since the throughput measured does not vary substantially over
location. Location 21 is behind a closed door at 129 ft, where
the throughput begins to drop because of attenuation of the re-
ceived signal due to path loss.

Fig. 22 shows results for TI’s PBCC-22 PCcard solution
versus test location number. Again, these results indicate
relatively robust receiver performance in a real environment.
As in the case of CCK-11, the throughput drops at location 21
because of attenuation of the received signal due to path loss.

Fig. 23 directly compares average throughput over distance
of TI’s CCK-11 and PBCC-22 solution to two CCK-11 PC-
card solutions currently available on the market. The average
throughput is computed by averaging puts and gets together over
measurements taken from different test locations at the same
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Fig. 23. Average rate versus range: ACX100, brand-I and brand-A/O.

distance thereby producing a single average throughput at each
distance. For the TI solution, the average throughput was com-
puted from CCK-11 data shown in Fig. 21 and from PBCC-22
data shown in Fig. 22.

It should be noted that maximum measured throughput de-
pends on several factors including the measuring tool. For ex-
ample, measured throughput depends heavily on packet size;
this is because there is a fixed amount of overhead per packet
from preamble times, channel contention times, etc., and with
longer packet sizes this overhead occupies a smaller fraction of
on-air time. Thus, for meaningful comparisons it is critical to es-
tablish a uniform method of measurement. The results presented
in this paper were obtained using WAR FTP version 1.65 which
is commonly used by many vendors building WLAN products.
The measured difference between puts and gets in Figs. 21 and
22 is an artifact of this application. Because of this, the average
throughput presented in Fig. 22 may be lower than other results.
In addition, Fig. 23 shows the average over puts and gets from
Figs. 21 and 22. However, the relative drop in throughput over
range should be independent of the measuring tool which di-
rectly compares the robustness of the different solutions.

VI. CONCLUSION

An effective and novel solution to the problem of equalizing
and decoding IEEE 802.11b transmissions has been presented.
The essential features of the approach are to model the combi-
nation of code plus channel-induced multipath distortion as a
combined “supercode”; to derive an estimate of the structure of
this supercode from the packet preamble; and then to decode
this supercode via the computationally efficient Fano sequen-
tial decoding algorithm. This approach has been shown to pro-
vide excellent results, both in idealized simulation and when
implemented in real-world devices. In simulation, the approach
is very much better than separate decoding and equalization,

and comes very close to achieving maximum theoretically pos-
sible performance. In practice, an implementation of this algo-
rithm provides substantial throughput gains over comparable re-
ceivers.
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