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On the Capacity of Permanent Memory 
CHRIS HEEGARD, MEMBER, IEEE 

Abstract-Many forms of digital memory have been developed for the 
permanent storage of information. These include keypunch cards, paper 
tapes, PROMS, photographic film and, more recently, digital optical disks. 
All these “write-once” memories have the property that once a “one” is 
written in a particular cell, tbis cell becomes irreversibly set at one. Thus, 
the ability to rewrite information in the memory is hampered by the 
existence of previously written ones. 

The problem of storing temporary data in permanent memory is ex- 
amined here. Consider storing a sequence of t messages WI, W, , . . . , w in 
such a device. Let each message w consist of ki bits and let the memory 
contain n cells. We say that a rate t-triple (R, = k,/n, R, = k2/n,. . ., 
R, = k,/n) is achievable if we can store a sequence of messages at these 
rates for some n. The capacity Cr* c R!+ is the closure of the set of 
achievable rates. The capacity C,* for an optical disk-type memory is 
determined. This result is related to the work of Rivest and Shamir. 

A more general model for permanent memory is introduced. This model 
allows for the possibility of random disturbances (noise), larger input and 
output alphabets, more possible cell states, and a more flexible set of state 
transitions. An inner bound on the capacity region Cz* for this model is 
presented. It is shown that this bound describes CF in several instances. 

I. INTRODUCTION 

w 
E ARE interested in the temporary storage capacity 
of memories that have been developed to store 

permanent information. This class of “write-once” mem- 
ories (WOMs) includes keypunch cards, paper tape, 
PROMS, photographic film, and, more recently, digital 
optical (or video) disks. A keypunch card is a generic 
example of this type of memory. Binary data is represented 
on a card by associating the numbers zero and one with a 
blank or mark, respectively. Once a one (mark) is written 
on the card, that location becomes permanently associated 
with a one. Thus the ability to write future data on the card 
is hampered by the existence of previously written ones. 

In a recent paper [l], Rivest and Shamir consider the 
possibility of rewriting information in permanent memory. 
They note the potential cost/performance of the new class 
of digital optical disks. The disks cost on the order of 
$100.00, have on the order of 1O’i memory cells (the 
equivalent of 40 reels of magnetic tape), and have a high 
access rate. Rivest and Shamir ask the following question: 
If we would like to store a sequence of t messages 
w,, w*,* * *> W,, each of which consists of k bits, how many 
binary WOM cells n*(k, t) would be required? Obviously 
n*(k, t) 2 k, but the interesting fact is that n*(k, t) can be 
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much less than the product kt. The motivating example is a 
code that can store two bits (k = 2), in three binary WOM 
cells (n = 3), twice (t = 2). Rivest and Shamir determine 
n*(k, t) for modest values of k and t, determine 

Co*(t) = lim k/n*( k, t) 
k-m 

for small t (C,*(2) = 0.7728), and show 

c,*(t) = + log, (1 + t) 

for large t. The authors also show 

lim t/n*(k, t) = 1 
f-+cc 

for every k and conjectured n*(k, t) = max(t, kt/log, (1 
+ t)) for large k and t. 

In this paper we expand on some of the notions intro- 
duced in [l]. In the process, we answer many of the open 
questions suggested in the conclusion of [l]. We put these 
problems into a coding and information theory framework. 
In many ways, these questions are related to the problem 
of storing messages in defective computer memory [2]-[4]. 
References [2]-[4] concern the capacity of defective mem- 
ory (typically, “stuck-at” cells) when information concem- 
ing the locations of the defects is available to the writer 
(encoder). The difference in our problem lies in the fact 
that the “defects” are introduced by the storage of previous 
messages in memory. When we store message w, we first 
read the memory to obtain this defect information. This 
“side” information is then used to encode the data in such 
a manner that the creation of new defects is minimized. In 
this way we better utilize the potential storage capacity of 
the memory. 

We begin our discussion by looking at the Rivest-Shamir 
problem in a more general setting. Suppose that we would 
like to store a sequence of t messages WI. W,; * *, W,, 
where K is a message consisting of kj bits. We say that a 
rate t-tuple (R, = k,/n, R, = k,/n;-., R, = k/n) is 
achievable if we can store a sequence of messages at these 
rates for some n. The capacity C,* c R!+ is the closure of 
the set of achievable rates. We determine C,* for the 
Rivest-Shamir model and relate this to C:(t). We also 
establish that the maximum average rate achievable 

c*(t) = max L iR, 
(R,,R,;..,R,)EC: ’ j=l 

is equal to (l/t)log,(l + t) for all t. 
We then develop a more general WOM model. This 

model allows for the possibility of random disturbances 
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(noise), larger input and output alphabets, more possible 
cell states, and a more flexible set of state transitions. An 
inner bound on the capacity C,* is established for this 
general W O M  model. Although it is unlikely that the inner 
bound is the true capcity, the bound is tight in several 
special cases. It is shown that when the output and the next 
state coincide, and when the output is a deterministic 
function of the current state and input, the achievable rate 
region is optimum. It is also demonstrated that for the 
Rivest-Shamir model with binary symmetric noise at the 
input, the bound describes the capacity region C,*. 

In a recent paper by Wolf, Wyner, Ziv, and Korner [5], 
other generalizations of the Rivest-Shamir problem are 
studied. In a framework derived from Heegard and El 
Gamal [4], and Wolf et al. consider the e-error capacity of 
deterministic, binary WOMs. As in [4], they study the 
W O M  problem by considering the present state of the 
memory as side information available to the writer (en- 
coder) and/or reader (decoder). Four cases are considered: 
1) both encoder and decoder informed, 2) only encoder 
informed, 3) only decoder informed and 4) both encoder 
and decoder uninformed. Case (2) corresponds to our 
Theorem 4 when (Y = /3 = 0. The most difficult case de- 
rived in [5] seems to be the last, where it is shown that 

1 .-R2 
c*(t) 5  L  --!L- 

t 6ln(2) 
and 

7T2 
lim tC*(t) = ~ = 
t-w 6 In (2) 2’37. 

II. THE CAPACITY OF THE DETERMINISTIC BINARY 
W O M  

Suppose that we are interested in storing a sequence 
W l, w,; . ., W , of independent messages on a nonerasable 
disk. We  assume that when we store u/;, the values of the 
previous messages W ,, W ,; . ., W ,_i need not be retained. 
Let the disk initially consist of n  blank cells, and let the 
message K have rate Rj, that is, let it belong to the set 
{1,2,*. ., 2nRi}. When the sequence has length t = 1, we 
can store W I at any rate R, I 1  bit per cell. For two 
writes, t = 2, we could simply divide the disk into two 
pieces, the first consisting of np cells (0 I p  5 1) and the 
second containing the remaining n(1 - p> cells. Then we 
can first store W I followed by W , for any rate pair 
(R,, R2) in the set 

is the set of vectors compatible with y, i.e., C(y), are those 
vectors that can be written on a disk that currently reads y. 
Note that such a choice of x2 can be written on ,the disk 
undistorted and can ‘be correctly decoded by recognizing 
its membership in A’w,. The encoding of W , is successful 
whenever A’w, n C(x,) is nontrivial. We  shall now use a 
random partition argument to show that when R, < 1 - E 
and n is sufficiently large, there exists a partitioning of C, 
for which 

Ai n  C(y) #  0  forevery w E {1,2,*.*,2”R2} 

and y E B,. 

Randomly partition C, into 2nR2 subsets of equal size, 

IA’,! = IC212-nRz. 

Fix w E {1,2; . *, 2nR2} and y E B,. Then 

{ (4, R2) E R2,lR, + R, I l}. 0) 
The purpose of this paper is to show that we can do better 
than this by constructing a “partition” code. 

Fix 0 < e < l/2 and let C, = B,, where the set 

B, = {x E {O,l}“]]lx]] I ne} 

is the E Hamming ball centered at 0 (i.e., the set of binary 
n-tuples with Hamming weight less than or equal to ne). 
Define a partition of size 2nRl for C, 

{ A;,A;,*-.,A1,“R,}, 

‘A2,‘-1 IC,l - IC(y) n  C,l - i 
P(Af+ n  C(y) =  0) =  n  

i=o IC2l - i 

I 
Gl - I’% ‘) n  C2l 

IC2l 

Since ]]y]] I nr, ]C( y) n  C,] 2 2”(l-‘) - 1, thus 

p( Ai n  C( Jo) =  0) 5  (1 - IC2(-1(2n(1-c) - 1))‘Cz’2~“R2 

< e-(2”(‘-‘4z)L1), 

where the last inequality follows from the fact that (1 - 
x)!’ < ePXy for y > 0. Note that this probability quickly 

whereAinA:= 0, i#j,and 
p1 

Cl= UA’,. 
w=l 

Similarly, let C, = (0, l}” - B, be the set of binary vectors 
with Hamming weight greater than ne, and define a parti- 
tion 

{ A;, A;;. -, A&,} 

of size 2”R * for C,. To store W , E {1,2,...,2”R1}, simply 
choose any vector x1 E Alwl and write it on the disk. The 
value of W I can easily be obtained by recognizing that the 
vector written on the disk belongs to subset A&. Of 
course, this requires that A& not be empty. Since [6, p. 
3101 

Pcl = E ( ; ) 2 {g-&q FCC) 
i=l 

(where h(x) = -xlog,x - (1 - x)log,(l - x) is the bi- 
nary entropy function), we can argue that for sufficiently 
large n, there exists a partitioning of Cl with AL #  0  for 
every w E {1,2;.*, 2nRl}, provided R, < h(c). 

To store message W , E {1,2,. . a, 2nR~}, we choose 

where 

c(y) = {z E {O,l}“]y, = 1 * z, = 1) 
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vanishes for increasing n when R, < 1 - E. Furthermore, 

P (thereexistsaw E {1,2,*..,2”R2} 

5 w-l yz.B p(& c-7 C(Y) = 4 
< 

< 2n(R,+/1(rQ,-(2”(‘-‘-~9-1) 

where we use the fact that III,1 I 2nh(f) [6, p. &O]. We see 
that for R, < 1 - e and large n, this probability becomes 
negligible. This shows not only the existence of the desired 
partitions of C, but also the fact that for large n, almost 
every partition satisfies the requirement that 

A2, n C(y) # 0 forevery w E {1,2,...,~~~~} 

and YEI?,. 

Combining these results, we see that there exists a parti- 
tion code that allows us to store WI followed by W, for 
any rate pair (R,, R2) in the set 

{(R,, R2) E R$IR, < h(c), R, < 1 - c,O I E I l/2}. 

(2) 
Let C,* denote the closure of this set (2). Note that the set 
(1) defined by dividing the disk is strictly contained in C,* 
(see Fig. 1). We will presently show that it is not possible to 
do better than (2); thus we refer to C; as the zero-error 
capacity region for a sequence of two writes. Similar rea- 
soning can be used to determine the zero-error capacity 
region C,* for any finite value for the sequence length t. 
Before we state this result as a theorem, consider the 
following definitions. 

The binary “or” operator V is defined by 

XVy= 
i 

0, ifx=y=O 
1, otherwise. 

A deterministic binary WOM (e.g., a nonerasable disk) can 
be modeled by y = x V s, where y, x, s E (0, l}“, and the 
or operator is performed component-wise. We can inter- 
pret the x vector as the WOM input and the s vector as 
the present WOM state (the vector already written on the 
disk). The y vector is both the WOM output and the next 
state of the disk. 

A binary (n, R,, R,,. + ., R,) code consists of t encoding 
functions 

h: {1,2;. . ,2nRJ} x(0,1}” + {OJ}” Ililt, 
and t decoding functions 

gi: {OJ}” + {1,2,.*.,2”Rl} lrilt. 

(Note that fj need only be defined for those values of the 
second argument that lie in the range of f,-r.) A code has 
no errors if for every sequence wr, w,; . . , w,, 

wi = gi( fi( wi? ‘i-1) ’ si-l) for i = 1,2;..,t 

where s,, = 0, si = fi(wj, siFI) v siel. 

1 ‘32 

Fig. 1. The capacity region for the deterministic binary W O M  when 
t = 2. 

We now argue that we cannot do better than CT when 
t = 2. Suppose that we have an encoder (fr(w,), 
f2(w2, fr(wJ)) that maps a message pair (wr, w2) onto a 
pair of binary n-vectors and a decoder (gt, g2) that maps 
these binary vectors onto an estimate of the message pair. 
We can assume without loss of generality that f2( w,, fr( wr)) 
is compatible with fI( wr) (i.e., f2( w,, fr( wr)) E C( fr( wr))). 
Let 

nc = 
wlql;y2”Rq 

IlfhA 

be the maximum Hamming weight of a vector produced by 
the encoder jr. Since jr must be one-to-one, 

nc 
2- 5 n 

c( 4 
i=O 

1 s 2nh(c) 

or R, 5 h(e). The second encoder, f2, must also be one-to- 
one, in the first argument. Let w be any message achieving 
Ilfr(w)ll = nc. Then 

2nRz I IC(fi(W))l = 2n(1-r) 

or R, I 1 - B. Thus (R,, R2) E C,*. 
A rate t-tuple (R,, R,; . ., R,) is said to be zero-error 

achievable if and only if there exists an error-free 
(n, 4, R,,- - 0, R,) code for some n. The closure of the set 
of zero-error achievable rates is called the zero-error capac- 
ity region C,*. 

Theorem 1: The zero-error capacity region for the de- 
terministic binary WOM is the convex region 

CT = {(R,,R,,-*,R,) E  K+l 
R, 5 h(q), 
4 I (1 - q)h(~2), 

R,-1 I (1 - q)(l - ~2) ..- (1 - c~-~)~(Q-~), 

R, I (1 - er)(l - c2) ... (1 - et-r), 

where 0 _< Q, Ed;. .,cr-r I l/2}. q 
Up to this point, we have assumed that the generation 

number, i.e., the time index of the current message is 
known during both the encoding and decoding stages of 
storage, e.g., for t = 2 we know if W, or W, is stored. The 
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problem as originally formulated [l] did not have this 
assumption. 

We  define Cc(t) as the zero-error, fixed-rate capacity 
when the generation number is not explicitly known by the 
encoder and decoder. The following argument will show 

c,*(t) = max R. 
(R,,&,...,R,)=C: &CR,= . =&CR 

This implies that knowledge of the generation number 
cannot improve the storage rate. 

Let t = 2 and consider the previously described parti- 
tion code when R, = R, = R. Assume that the code has 
zero probability of error. Since C, n  C, =  0, we can 
obtain a partition 

{&~~,‘-,~yR} 

of the set of binary n-tuples (0, l}” by letting 

A,=A’,UA2,. 
Consider the following encoding algorithm. Given a 

message w E {1,2; . a, 2nR} and a vector s E {O,l}” on 
the disk (initially s = 0), store any vector x E A, n  C(s) 
of minimum Hamming weight. Since we begin with an 
initially blank disk, we are guaranteed that the first vector 
written on the disk will have Hamming weight less than or 
equal to nc. This in turn implies that the second encoding 
will be successful. Constructing such a code requires R I 
min (h(c), 1 - e). This bound is maximized when h(e) = 1 
- z. Thus C,*(2) = root { h(z) - z} = 0.773. Similar argu- 
ments show the following corollary (see Fig. 2). 

I 

n .646 a.773 = I 
Fig. 2. C,,(t) for the deterministic, binary WOM. 

Corollary: For a deterministic binary WOM, C<(t) is 
obtained recursively 

C,*(l) = 1 

Co*(t+ l)=root{h(z/C,*(t))-z}. 0  

The proof of this result involves finding ci, t2,. * *, et-i, 
which are the solution to 

+I) = (1 - dh(d 
= . . . = (1 - Ei)(l - c2) ... (1 - et-i). 

The answer is to set etpi = 1 - Z/&i, where Z. = 1, 
Zi = root { h (z/Z; _ 1) - z }. This corollary is consistent 

with [l], where Rivest and Shamir also show C$(t + 1) = 
log, (1 + t)/t for large t. Another interesting parameter 

c*(t) = max 1 iR, 
(Rl,R,,...,R,)EC;* t j=l 

is the maximum average capacity. We  have the following 
corollary: 

Corollary: For a deterministic binary WOM, 

c*(t) = +og, (1 + t). q  

Proving this result involves finding ci,e2; * *,c~-~ that 
maximize 

h(c,) +(l - q)h(c2) + *a* 
+(1 - Ei)(l - E2) * * * (1 - Et-i). 

The solution is to set efei = l/(2 + i). Thus, for example, 
in the t = 2 case, we find that e = l/3 will maximize 
R, + R, in C,* and that C*(2) = l/2 log(3). Note that 
Co*(t) < C*(t) for t > 1. 

III. ON THE CAPACITY OF A NOISY W O M  

We have developed the notions of coding and capacity 
for the storage of a sequence of messages on a nonerasable 
disk. The operation of the individual cells of the disk could 
be described as follows. Initially, a  binary letter applied to 
the input of the cell is faithfully reproduced at the output. 
However, once the value of the stored letter is a one, the 
operation of the cell is altered. From this point forward, 
the output of the cell becomes fixed at one. Thus we may 
describe the cell as a binary device with two states (the 
output equal the input state and the stuck-at-one state). 
Each cell begins in the first state and permanently transfers 
to the second state once a one is stored. 

We  now introduce a general memory cell model to allow 
for the possibility of random disturbances (noise), larger 
input and output alphabets, more cell states, and a more 
flexible set of state transitions. The addition of noise makes 
it likely that the zero-error capacity is not a useful notion 
(i.e., it is trivial). It is, in these cases, more meaningful to 
determine the e-error capacity of the memory (i.e., “At 
which rates can the probability of error be made arbitrarily 
small?“). 

Consider the following definitions. An (X, S, Y, 
Po(% Yh PCs+> y]x, s)) generalized discrete memoryless 
W O M  consists of three alphabets, X, Y and S; a probabil- 
ity distribution po(s, y) on the letters of S X Y, and a 
conditional probability distribution p(s+, y]x, s) on the 
letters of S X Y conditioned on the letters of X X S. We  
may interpret the cells as having an input space X, a state 
space S and an output space Y. 

For a memory consisting of n cells, an initial state vector 
y. E S n and output vector go E Y n are generated accord- 
ing to the product distribution 

p( yO = s, gO = Y> = JfllPO(sj3 Yj)* 

Thus, initially each cell of the memory independently 
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chooses a state s E S and output y E Y with probabiity 
po(s, y). When an input vector x E X” is stored in a 
memory with state vector s E S”, a new state vector 9’+~ 
S” and output vector g4/E Y” are obtained according to 
the product distribution 

‘ty+= ‘+> g’= Ylx> s, = ,fllP(sT 7 Yjlxj> sj). 

Thus, for each cell with state s E S and input x E X, the 
next state S+E S and output y E Y are independently 
selected with probability p(s+, ylx, s). 

For example, the deterministic binary WOM has al- 
phabets X = Y = S = (0, l}, initial distribution po(O,O) 
= 1, and a transition and output distribution 

P(WO,O) = P(WLO) = P(LW,1) 

=p(l,l]l,l) = 1. 

In this case, the output is the next state and a function of 
the current state and input. 

An (n, 4, R2; - sy R,, S) code consists of t encoding 
functions 

fi: {1,2;. *,2nR,} x Y” + X” 

and t decoding functions 

g;: Y” -+ {1,2;. m,2nR,}. 

Let W,, W,; . ., W, be a sequence of independent messages 
with K uniformly distributed over the set K E 
{1,2,* . *9 2nRi}. A sequence of input, state, and output 
vectors (Spg, go), (TI, yl, gI), (T2, y2, g2),. . a9 
(Zt;, 9’*, ‘Z$) is obtained, where for 1 < i < t, xi = 
fi ( W,, gi _ i). The i th probability of error is defined as 

Pi = P(g;@;) # w;.). 

The (worst case) probability of error is 

6= maxPi. 
liilt 

A rate t-tupe (R,, R,; . ., R,) is said to be e-achievable 
if for any e > 0 there exists an (n, R,, R,; - -, R,, S) code 
for some n with S < e. The closure of the set of e-achiev- 
able rates C,* is called the e-error capacity region. Co*(t) is 
defined as the least upper bound on the set of e-achievable 
rates for a fixed encoder and decoder 

f: {1,2,.*.,2”R} x Y” --)X” 

g: Y” -+ {1,2; * *,2nR}. 

(Note that these functions are not allowed to depend on 
the generation number of the message.) Thus C:(t) is 
referred to as the fixed-rate capacity. Similarly, C*(t) is 
defined as the maximum average rate that is e-achievable: 

c*(t) = max 1 iRj. 
(R,,R,;..,R,)EC: t j=l 

Let us consider how we might extend the idea of a 
partition code to a memory consisting of n (X, S, Y, 
po(s,y), p(s+, ylx, s)) cells. Before we begin, we will need 
the notion of e-typical sets. Fix a small e > 0, and let 

(a, g) be a pair of independent, identically distributed 
(i.i.d.) random vectors 

p(T= x, g”Yy> = l@lP(xj? Yj>. 

Then the set of r-typical x vectors is defined as 

for every x E X 
1 

, 

where lx(xi) is 1 if xi = x and 0 otherwise. This is the set 
of sequences for which the empirical frequency is within E 
of the probability p(x) for every letter x E X. We can 
similarly define the set of jointly e-typical vectors T,( X, Y) 
and the set T,(Ylx) of vectors y E T,(Y) that are jointly 
e-typical with a given vector x E X”. (A complete discus- 
sion of e-typical vectors can be found in [7,8].) We shall 
need the following facts: 

1) If 3 is randomly chosen, then P(.%E T,(X)) + 1 as 
n-+ca 

2) If x E T,(X) and 9 is independently chosen accord- 
ing to the marginal distribution for ‘3, then 

2-“(I(xy)+v 5 p(g’E T,(ylx)) < 2-“(I(X;Y)-9 

for some X(E) > 0 with A + 0 as e --) 0 (note that I( X, Y) 
is the mutual information). 

Let t = 2 and consider the following random partition 
argument. We will show that for certain values of (R,, R,), 
we can randomly construct an encoder ( fi, f2) and decoder 
(gi, g2) that will, on the average, have a probability of 
error that vanishes with increasing n. This will prove the 
r-achievability of these rates. 

Fix c: > 0 and let Vi E U be an auxiliary random vari- 
able. Choose a conditional distribution pl( u, xl y) on U x 
X conditioned on Y. Let pi(u) be the marginal distribu- 
tion of Vi under the joint distribution po(s, y)pl(u, xly) 
of the random variables (So, Yo, U,, Xi). Independently 
choose a set of 2”Ql vectors according to the uniform 
distribution over the set T,(U,). Call this new set C,. Next, 
randomly partition C, into 2nRl equal size subsets 

Let WI E {1,2;.., 2nRl} be the first message to be 
stored. An initial output go is read from the memory. 
Since go is correlated with the initial state of the memory 
yo, the @J,, vector can be useful in storing WI. This is done 
by choosing a vector 

If such a vector exists, then randomly choose a vector from 
the set T,( XI%!,, go) and write this vector into the memory. 
The encoding is successful whenever 
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is not empty. Now 

Since P(go E TJ Y,)) -+ 1 for 6 > 0 and large n, we need 
to find a bound on the second term: 

P(A’w, n  T,(W % ,) = W %  E T,(J”d) 

I(1 -2- n(I(U1; Y,)+h) 
) 
2”(Q1-R1) 

< exp{ -2tQ,-R,-WA;Yo)-~) 
4 

Thus if Q, - R, > I(U,; Y,), E is sufficiently small, and n 
is large, then the encoding will be successful with high 
probability. 

To decode W I, we first read y1 from the memory. Then 
we look for a unique estimate @ i E C, n  T,(U$Vl) of the 
vector @ i. If such an estimate exists and it belongs to the 
Ai subset of C,, then we set I@i = k. Then 

P(JQI # y) s p(% # al) 5  ~(@!,A) g W l,Yl)) 

+ P(there exists a u # % ‘,, 

u E Cl n  T,wll~~)l 
t%gl) E  T,WI~ a>. 

Again the first term will approach zero for large n and 
positive E. The second term can be expressed as 

< 2”tQ,-I(Y; &)+A) 

This probability will become negligible for large n when 
Q, < I(U,; Y,) and e is small. Combining this bound with 
the previous Q, - R, > I(U,; Y,), we conclude that rates 
R, < I(& Y,) - I(U,; YJ are e-achievable. 

A similar construction can be used to encode and decode 
W ,, since for large n with high probability (%i, 9’i, gi) E 
T,(U,, S,, Yl). However, in this case, we may be able to get 
a better estimate of the state .Y’i by using the fact that the 
estimate &t is equal to % i with high probability. In this 
case, we choose a conditional distribution p2(u+, xlu, y) 
on U x X conditioned on U X Y. The marginal p2(u) of 
the random variable U, under the joint distribution 

Poh Y>Pl(% xlY)Pb+, Y+k dP2b+, x+IK Y’> 
of the random variables (So, Yo, U,, Xl, S,, Y,, U,, X2) is 
used to choose 2”Qz vectors C, c T,(U,). Then C, is parti- 
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t ioned into 2”R 2 subsets of equal size 

{ A:, A$,* * * , A$R~}. 

To encode W ,, choose ‘4V2 E A”w, n T,( U21d1, gi) and 
store a vector ZZ2 E T,( X21@*, &i, gi). This will be possi- 
ble, with high probability, for Q2 - R, > I(U2;nUl, Y,), 
small E, and large n. To decode W ,, find a unique a2 E C, 
n  T,(U21g2). If k2 E AZ, then I@2 = k. The probability of 
a  decoder error will be small for Q2 < I(U,; Y2). Thus rates 
pairs (R,, R 2) are c-achievable for 

R, < J(U,, r,> - It&; r,> 

R, < 104; Y,> - I(u,; u,, Y,). 
The following theorem extends this argument to any 
finite t. 

Theorem 2: An achievable rate region. Fix t, (X, S, Y, 
po(s, y), p(s’, ylx, s)), and an auxiliary alphabet U. 
Choose t conditional distributions 

P&4 XIV>9 P2@+, 4% Y>C * .9 PI@+, 4% Y> 
for U x X conditioned on U X Y. Let the joint distribu- 
tion of the random variables (So, Y,, U,, Xl, S,, Y,, U,, 
x2, s,, y2,-**> V,, X,, St, Y,) take the form 

PObO? YO)PIbb XIIYdPh, YII% so> 

Then (R,, R,; . ., R,) E C,* if 

R, < I@,; Y,) - I@,; Y,), 

and for i = 2,3, *. . t 
R; < I(q.; &) - I(LJ; lzpl, q:.,). 0  

We note that the region described by Theorem 2 may 
not be convex; it is easy to show that convex combinations 
of rates described by Theorem 2 are also achievable. 

Although it is unlikely that the region described by 
Theorem 2 is the capacity region Ct*, the following theo- 
rems demonstrate that for nontrivial cases this region is 
optimum. First we note that if we choose conditional 
distributions pi(u+, xlu, y) that do not depend on ZJ we 
get the following. 

Corollary: Fix t, (X, S, Y, po(s, y), p(s’, ylx,s)), and 
an auxiliary alphabet U. Choose t conditional distributions 

Ph, XIV>> p2b4+, XIV>,* * *? Ptb+? XIV> 

for U x X conditioned on Y. Let the joint distribution of 
the random variables (S,, YO, U,, Xl, S,, Y,, U,, X2, S,, 
r,,* . -3 U,, X,, St, Y) take the form 

). Pots07 YO)z~IPi(ui9 xilYi-l)P(si~ Ytlxi7 ‘i-1 

Then (R,, R,; * *, R,)~C,*iffori=1,2;.. t 

R; < I&; F) - I(& T:--,). q  

We note that in general the (convex hull of the) rate region 
described by the corollary is a subset of the (convex hull of 
the) rate region of Theorem 2. However, when the output 
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and the state are the same (i.e., S = Y and Si = Y, S X Y = s+ 
0 I i I t), the rates achieved by the corollary are equiv- I ,‘-a 
alent. This is intuitively reasonable. (To see that this is the 0  
case, use the chain rule for mutual information to write 0  x’ 1-a 0  

I&; lg - I(& Q-J-J 

= I(q; YJ - I(&; q-1) - I(& v,-,lq::_,). I ‘7’ 
0  / 

Then note that I(&; Y) - I(l.J; F:._ i) is only a function of Fig. 3. A binary W O M  with input noise. 

Pt”i9 xilYi-l) = C P(“i-lIYi-l)P(ui, xil”i-l, Yi-I> 
U,-1EU output by ?V= ((.%+ pi) V 9) + % “0 and the next state 

and not p(ui, xilui-i, y,-i). Finally, note that by 9’+= (.%?+ Zi) V 9, where Ti and 9’,, are i.i.d. bi- 
I(z$ q-,I~-,> 2 0.) nary error vectors and addition is performed modulo 2. It 

If, in addition to Si = Y, the output is a deterministic would be of interest to determine C,* in this case. While 
function of the input and state (i.e., Y. = e( X,, Y-i), then this remains as an open problem, we can solve it in the 
the corollary characterizes C,*. special case of input noise only, i.e., Z0 = 0). Note that, in 

Theorem 3: The capacity of deterministic WOMs. Fix t 
this case, the next state and the output agree ?V= Y+. 

and let (X, Y, pO( y), e(x, y)) describe a deterministic, Theorem 4: The e-error capacity for a binary W O M  
memoryless WOM. Then with binary symmetric noise at the input. Let X = S = Y 

C,* = {(R,,R,r,R,) E % I 
= (0, l}, po(O,O) = 1 - p, p&l) = p, 0 I ff I l/2, 
and p(s+, y(x, s): 

Ri I H( YJyi-,), 1 I i I t}, XS s+=y=o s+=y=l 

where the joint distribution of the random variables 00 1-a 
(%, Xl, J? = 4X1, Y,), 4, & = 4X2, Yd,-. +) 4, Y, = 10 ff 1ya 
e( X,, Y,-i)) is described by 01 0 1 

Po(Y,)P,(X,lY,)P*(~*lY,) * * * PtbtlY,-I). 0  
11 0 1 

The region described by Theorem 3 is convex since the 
(see Fig. 3). Then 

conditional entropy H( Y,lq- i) is a concave function of C,* = {(R,,R,,-*,R,) ER:l 
the joint distribution of (Y, yi-,). The achievability of the 
interior of this region follows by setting Ui = q in the 

R, I (1 - P)(hb* cd - h(a)) 

corollary to Theorem 2. Next we will sketch the converse. R, I (1 - ,8)(1 - a*d(hb*d -h(d) 
Fix a small e  > 0, and suppose there exists an 

(n, 4, R,; . ., R,, 8) code with 6 < e. Let gi = 
e(fi(J+$‘9i-1),gi:.-1), where W ,,W ,;--,W , is a sequence R, I (1 - /I)(1 - a*ei) .a. (1 - “*et-i)(l - h(a)), 

of independent messages with K uniformly distributed where 
over the set wl: E {1,2,. . . , 2nRi}. By Fano’s inequality, 0  I C1,C,“‘,Ct-l I l/2}. q  

H(Wil’?Vi) < h(c) + ncRi = ntl,, Note that 

where 8, = (l/n)h(e) + rRi -+ 0 as e + 0. Then ff*e=(l-l++lY(1-e). 

nR, = H( W i) = H( ~1’3::_,) For p = (Y = 0, we get the deterministic binary W O M  

I I(W i; gilgiul) + no, 
result, in agreement with Theorem 1 and [5]. Note that the 
zero-error capacity and e-error capacity are the same in 

I i H(YijlYij_,) + en, 
this case (we do not get trapped by the fact that we use the 

j-1 
same notation, Ct*, for both). 

The achievability of Theorem 4 follows from the corollary 
where Yj is the jth component of Yi, etc. Finally, by the to Theorem 2 by setting Vi = Xi. A point on the boundary 
concavity of entropy, we can find random variables of the capacity region is obtained by setting 
( Yi *, Y * i) satisfying 

Ri I H( y,*Iy,ic,) + 0,. 
P( xi = llY:.-i = 0) = Pi(l(0) = Ei, (3.1) 

By making e small, we see the rates approach the region P( xi = llY:.-i = 1) = Pi(l(l) = “‘,’ caa’ . (3.2) 
described by Theorem 3. 6 

The achievable rate region of Theorem 2 can also be Note that, in general, when lJ = Xi 
shown to be optimum in nondeterministic cases. Consider 
the original Rivest-Shamir model with white, binary sym- 

I( xi; yi) - I( xi; IQ I I( xi; I&,). (3.3) 

metric noise at the input and the output. We  model the However, under (3.1) and (3.2) equality is achieved in (3.3). 
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It is for this reason that the converse, which is given in the 
Appendix, holds. 

Let 11 . 11 denote the Hamming weight of a  vector, then 

For this model, we can also determine C:(t) and C*(t). El19011 = i P(S, = 1) = 2 p,(l,l) = np. 
Corollary: For a binary W O M  with binary symmetric j=l j=l 

input noise, C,,*(t) can be obtained recursively, Fix 1 5 i 5 t, and for notational convenience let W  = W ;, 

C,*(l) = (1 - P>(l - h(d), 
%=%,, CU= gi (=q)and Y=q-,(= qj-i).Then 

n 
C,*(t + 1) = (1 - p)(root { h(z/C,*(t)) - z - h(a)}). 

q  

This result involves finding er, e2; . ., et-r, which are the 

Epq = c P(? = 1) 
j=l 

= ,+q = 1, s/ = 1) + P(? = 1, q = 0) 

solution to 

h(cw*cl) -h(a) = 5 P(s, = 1) + P(S, = O)P(? = 11% = 0) 
j=l 

= (1 - a*q)(h(a*c2) -h(a)) = ..* 
= (1 - “*q)(l - Q~*Q) ... (1 - a*<,-r)(l - h(a)). 

=EllsPll+ ~P(s,=O)Z’(~=l[s/=O). (5.1) 
j=l 

The solution is to set et--i = (1 - (Y - Z/Z,-J/(1 - 2fx), 
where Z,, = 1 - h(a), and Zi = root{h(z/Z,-r) - z - 
h(a))- 

Since (Y I P(I; = 1lsJ = 0) I 1  - (Y, we have 

(n - 4lWl) a  5  WYI - EIIYII 5  (n - WU(l - a). 

Corollary: For a binary W O M  with binary symmetric Thus we may find an 0 I L  I 1  such that 
input noise, EII’W I = Ell~ll +(n - 4Vll)(~ * a>. (5.4 

c*(t) = (1 - p> 
p4 - 1  (This can be done for each 1 I i 4  t; thus 
244 - 1  n - EllYbll = n(l - P) 

Proving this result involves finding er, e2; . ., c,-r, which n - EIIY;Ij = n(1 - R)(l - c1 *a) (5.3) 
maximize 

(h(a*cl) -h(a)) +(l - cx*cI)(h(cx*c2) -h(a)) + .+. 
+(l - a*~,)(1 - a*~~) a.. (1 - ‘Y*E,-r)(l - h(a)). 

The solution is 
1 - (Y(1 + yi) 

ef-i = (1 - 2a)(l + Vi) ’ 

where 
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APPENDIX 

CONVERSETOTHEOREM 4 

To show the converse to Theorem 4, we prove that for any 
(n, RI, R,,-. -9 RI,6)code,thereexistOIr,,r,;..,f,11such 
that for 1 I i I t 
Ri I (1 - R)(l - a*ci) . ..(l - o*ci-i) 

+I(a*q) -h(a)) + 8, 

where e(8) > 0 satisfies 8 -+ 0 as 6 -+ 0. 
Because of the randomness of the message sequence 

W I, w,;, . . , W , and the noise in the memory, the sequence 
9, = YO’,,z-~;,9~ = Y1;.-,%*,y; = q 

is a random sequence where 9-i = fi ( W , ,q _ 1). 

n  - Ellqjj,= n(1 - R)(l - ci*a) . ..(l - C,*(Y).) 

Now take R G (l/n)H(W), 8, ; (l/n)h(S) + 6R. Fano’s in- 
equality gives 

H( wla) I ne,. 

Note that 0, 4  0 as 6 -+ 0. Then 
~R=H(W)IZ(W;‘Y)+~~, 

I I( w; ap) + nen 

= i z(w;~.Y,~-) +e,, 
j=l 

where CV- = Q and gj- = (Y,, Y,, . . . ,3-i) for j > 1. Thus, 

nR I i Z(W,fi-,y.-,Pj+ ,xJ;~IQ +4 
j=l 

(where yn+ = + and 3’ = (?$+i,...,$) for j < n) 

= t z(qq~) +e, 
j=l 

since (W, y.-, q-, q’) + (3, S,) + Yj form a Markov chain. 
Then 

, nR< iP(J;=O)Z(Xj;qIq=O)+en 
j-1 

(since Z(X,; TlS, = 1) = 0) 
. 

=,F;P(s,=o)[~(P(Y,=~Is,=o))-h(.)] +-en 

where h(p) is the binary entropy function. Thus, from (5.1) and 
(5.2) 

nR I maxF(q),  
4  
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where 
4 = (41,%9...,%) 

qj = P( 5 = 11q = 0) 

F(q) = = i P(s, = O)[h(qj) - h(Lx)] + 8, 
j=l 

and where the maximum is over all q satisfying 

G(q) = E//b/J - EIIYJJ = : P( 4 = 0) q/. 
j=l 

Using a Lagrange multiplier A, take the partial derivatives 

J[F(q)+Wq)l =p(po) 1 g 
aqj 

/ [o (++“I. 
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in accordance with Theorem 4. Finally, we note that it is always 
sufficient to choose 0 5 ci 5 l/2 for 1 I i I t - 1 and ft = l/2. 
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