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On the Capacity of Computer Memory with 
Defects 

CHRIS HEEGARD, MEMBER, IEEE, AND ABBAS A. EL GAMAL, MEMBER, IEEE 

Abstract-A computer memory with defects is modeled as a discrete 
memoryless channel with states that are statistically determined. The 
storage capacity is found when complete defect information is given to the 
encoder or to the decoder, and when the defect information is given 
completely to the decoder but only partially to the encoder. Achievable 
storage rates are established when partial defect information is provided at 
varying rates to both the encoder and the decoder. Arimoto-Blahut type 
algorithms are used to compute the storage capacity. 
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W  E model a computer memory with defects and noise Fig. 1. Model for a binary memory cell with defects. 

as a discrete memoryless channel with states that 
are statistically determined [l]. For example, a binary If neither the decoder nor the encoder knows the states 
memory with stuck-at faults and soft errors is modeled by of the memory the defects act as binary symmetric noise 
the three discrete memoryless channels depicted in Fig. 1. and the storage capacity of the memory (i.e., the maximum 
Each memory cell has probability p/2 of being stuck at 0, number of bits that can be reliably stored) is simply given 
probability p/2 of being stuck at 1, and probability 1 - p by 
of behaving as a binary symmetric channel (BSC) with 
parameter z. C,, = 1 - h((1 -p)e + 5) bits/cell, 04 
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When only the decoder knows the states of memory, the 
stuck-at cells can be treated as erasures, and the memory 
model reduces to a noisy binary erasure channel with 
erasure probability p and error probability (1 - p)e. The 
storage capacity, in this case, is again given by (1.2). 

Suppose only the encoder is given the defect informa- 
tion. The following argument shows that the capacity is 
again given by (1.2). Choose a set of 2”R’ Bernoulli l/2 
binary sequences for some R’ < 1 - h(c). With high prob- 
ability this set will be a good code for the BSC with 
parameter z. Randomly partition the set into 2”R equal size 
subsets (or bins) and associate a different message with 
each bin. When the i th message is to be stored, search the 
i th bin for a sequence that is r-compatible with the known 
defect. (A sequence is e-compatible with the defect if it 
agrees with the stuck-at values in a fraction 1 - e of these 
cells.) If an e-compatible sequence is found in the i th bin it 
is stored, otherwise an error is declared. This codeword will 
now be correctly decoded with high probability, since each 
bit will experience an error with probability e. For large n 
there will be approximately np stuck bits, thus there are 
approximately 2 n(‘-p+ph(r)) binary sequences that are z- 
compatible with a given defect. The probability that an 
e-compatible sequence is in the code is 2n(R’-‘), thus the 
expected number of e-compatible sequences in the code 
book is the product 2n(R’-p+@(c)). If the number of bins is 
much smaller than the number of e-compatible sequences, 
then with high probability there will be an e-compatible 
sequence in the i th bin. This is true for R < R’ - p + ph ( C) 
and sufficiently large n. Since R’ can be made arbitrarily 
close to 1 - h(e) we see that the capacity is given by (1.2). 

Observe that for the case z = 0, the storage capacity is 
given by 

C = (1 - p) bits/cell. 

This is consistent with the work of Kusnetsov and 
Tsybakov [2]. Their work initiated a series of papers [3]-[8] 
concerning classes of binary codes for the case when the 
defects are known only to the encoder. 

In this paper we investigate the problem of finding the 
storage capacity of a memory with arbitrary but finite 
storage and retrieval alphabets and arbitrary collection of 
states. In Section II, we give a general lower bound (Theo- 
rem 1) to the capacity when the states are partially known 
at arbitrary rates to the encoder and to the decoder. This 
lower bound is tight in the following special cases (Theo- 
rem 2): a) no state information to either the encoder or the 
decoder, b) complete state information at both encoder 
and decoder, c) complete state information to encoder and 
no information to the decoder, d) complete state informa- 
tion to decoder and arbitrary state information at the 
encoder. Results a), b) can be found in Wolfowitz [l], and 
c) has been established by Gel’fand and Pinsker [9]. In 
Section III, Arimoto-Blahut [ lo]-[ 121 algorithms are pre- 
sented for determining the capacities in the cases of full 
state information. Examples are given. The proofs and 
derivations of theorems and algorithms are deferred to the 
appendixes. 

DEFECT SOURCE s 

Jd 

Fig. 2. General coding model for memory with defects. 

II. MODELANDRESULTS 

A discrete memoryless memory cell (S, p(s), X, 
p(ylx, s), Y) consists of three finite alphabets S, X, and 
Y, a probability mass function p(s) on the alphabet S, and 
a probability transition matrix p( ylx, s). The interpreta- 
tion is that s E S is a state that the cell can assume with 
probability p(s). In this state, if the letter x E X is stored 
then the letter y E Y is retrieved with probabilityp( ylx, s). 

It is assumed that the cells of a memory consisting of n 
DMMC’s are identically distributed and statistically inde- 
pendent. 

An (n, R, R,, R,, P,) code for a memory composed of n 
DMMC’s consists of four functions (see Fig. 2): 

J,: S” + {1,2”Re} 

Jd: S” --) {1,2nRd} 

and 

f,: {1,2”R} x {1,2nRe) + X” 

fd: Y” x {1,2”Rd} + {1,2”R}. 
The map J, provides a description of the state vector s 

for the encoder f, at a rate of R, bits/cell. The map Jd 
provides a similar service for the decoder fd at a rate of R d 
bits/cell. The encoder maps the message w and the state 
description J, into an input vector x. Finally, the decoder 
maps the output sequence y and the Jd description into an 
estimate of the message 8. 

The probability of error is defined as 
2”R 

P, = 2-“R c P( w f *jw is stored) 
W=l 
2”R 

= rnR c c c P(s)P(~,(Y, J,) f WI 
w= 1 SES” YE Y” 

x = Lb, J,), s). 

This is the probability that for a random message (and 
memory), the estimated message disagrees with the true 
message. 

For a fixed R, and R,, a rate triple (R, R,, Rd) is 
achievable if and only if for any e > 0 there exists a 
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(n, R, R,, R,, P,) code with P, -K E for some (possibly 
large) n. The  capacity function C( R e, Rd) of the memory is 
defined as the supremum over all achievable rates R for 
fixed (R,, Rd). We define the following four special values 
of C(R,, R,): 

C max = sup C(R,,R,), 
Re> Rd 

C,, = RinL C(R,, Rd), 

C,, = s$d(R,,O), 
R, 

C,, = sup C(0, Rd). 
Rd 

It can easily be  seen that C,, is the capacity when full 
knowledge of the states is given to both the encoder  and  
decoder.  Similarly, C,, is the capacity when no  state 
information is provided, C,, is the capacity when only the 
encoder  is given full information about the states, and  C,, 
is the capacity when full state information is given only to 
the decoder.  

We  would hope  to find an  explicit characterization of 
(R,, Rd) for all rates (R,, Rd). The  complete solution to 
this problem has not been  found. However, the following 
theorem gives lower bounds to C(R,, Rd) by describing a  
set of achievable rates (R, R,, Rd). 

Theorem 1: F ix (S, p(s), X, p(ylx, s), Y) and al- 
phabets U, S,,, S,, and  S,. All rates (R, R,, Rd) in the 
convex hull of the set 

((4 R,, R,)IR, ’ ~&,> Se; S> 
R, ’ I@,, S,; S) - Z(S,,, S,; Y) 
R, ’ Z(S,; SIS,) - Z(S,; W ,,) 

R, + R, ’ Z(so, se, s,; S) - &%,, s,; Y> + Z(% % I%) 
R, + R, ’ Z&o S,; W ,) - Z&i W ,) + Z(S,; W $ ,) 

R < Z(U; Y, &IS,) - Z(U; S,lS,) 
for some probability mass function 

?+, sO, se> sd, UP 4 =PwP( sO, se~ sdb)Pb, xIsO, h)> 

are achievable. 

The  proof of Theorem 1  involves techniques similar to 
those found in [14]-[ 161, [ 191, [20] and  is therefore deferred 
to Appendix I. 

Remark: If we let R, = 0, Theorem 1  reduces to the 
convex hull of the set 

((R, &)I& ’ I(&; sly); R < I(%  y(S,), 
for some probability mass function 

Ph sd, x> = P(s)P(sd~s)P(x)~* 

stuck-at type defects, C,, can be  achieved by providing 
the full defect information to only the encoder  or only to 
the decoder.  We  also note that C,, = C,, = p(s = l)C if 
for i > 1  Y is independent of X (i.e., p( ylx, s = i) = p( yls 
= i)). In this case, it need  not be  true that C,,, = C,,, as 
some of the examples in the following section will demon-  
strate. 

This result is identical to a  result by Ahlswede and  Han 
[131. 

III. ALGORITHMSAND EXAMPLES 

We now show that for several values of (R,, Rd), Theo-  Determining Cmin, C,,, C,,,, and  C,, for an  arbitrary 
rem 1  is optimal. These include C,,, C,,, C&, and  C,,,. DMMC can be  a  difficult analytical problem. However, 

Theorem 2: a) R, = R, = 0  (No description of defects) 
cm, = $I’( x; Y). 

b) R, > H(S), R, > H(SIY). (Complete description of 
defects at encoder  and  decoder)  

c) R, > H(S), R, = 0. (Complete description of defects 
at encoder  and  no  description at decoder)  

where 
IWI G en W lIM II) + IISII - 1. 

d) R, > H(SIY) (Complete description of defects at 
decoder)  

c= max max Z(X; YIS). 
P(%b) P(Xbo) 

subject to R,>I(S,; S) 

Furthermore, in the special case R, = 0: 

Cd,, = yy x; YlS>. 

The  achievability of this theorem follows from Theorem 
1  by identifying the auxiliary random variables as follows: 

a) So = S, = S, = (p, U = X, 
b) So = S, S, = S, = cp, U = X, 
c) So = S, = (p, S, = S; and  
d) S, = (p, (So, S,) = S, U = X. 

The  converses are proved in Appendix II. 
The  following corollary to Theorem 2  concerns the 

capacity of a  memory with stuck-at type defects. 
Corollary: Let S = (1,2; . 0, m}, p(ylx, s = 1) be  arbi- 

trary and  for i > 1 let p( yilx, s = i) = 1 for some yi E Y. 
Then  

C max = cc,, = cl,, = Pb = l>C, 
where C is the capacity of the DMC W ith p( ylx) = 
P(YlX, s = 1). 

Proof: Let p*(x) be a  probability mass function on  X 
which achieves capacity for the DMC (X, p( ylx, s = 
l), y), and  let p*(xl y) be  the (backward) probability tran- 
sition matrix for the DMC induced by p*(x). To  achieve 
C dec, set p(x) = p*(x). To  achieve C,,,, set U = X, p(xls 
= 1) = p*(x), and for i > 1 setp(xls = i) = p*(x)y,). 0  

This corollary shows that for memories which have only 
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these quantities can be easily evaluated numerically on a 
computer. The Arimoto-Blahut [lo]-[ 121 algorithm maxi- 
mizes Z( X; Z) over p(x) for a given transition probability 
p(z(x). This algorithm can be used to compute C,,, C,,,,, 
and C,,,. 

The value of Cmin can be computed by setting Z = Y 
and maximizing Z( X, Z) for 

HZ = Yld = c PWP(YlG 4. 
SeS 

The value of C,, can be determined by setting Z = Y 
for each s E S and maximizing Z( X, Z) = Z( X, Y Is) for 
P(Z = ylx) = p(ylx, s). Then we average the results of 
each maximization 

z(x; YIS) = c p(s)z(x; Yls). 
SES 

To compute C,,,, we use the Arimoto-Blahut (A-B) 
algorithm with Z = (Y, S). We maximize Z( X, Z) = 
Z( X; Y, S) with 

p(z = (Y, a4 = p(s)p(ylx, s). 
The result of this maximization is C,,, = Z( X, Y IS) since 
X and S are independent (i.e., Z( X, S) = 0). 

The value of C,,, cannot be computed directly by the 
A-B algorithm. A new algorithm is developed to compute 
C enc. This algorithm is presented here. The detailed deriva- 
tion is given in Appendix III. 

To compute C,,,, we express the capacity as 

where 

F= c c c c p(+d4+t(xlw) 
SES UEU XGX YE Y 

QblY) .P(YlX9 41% ~ 
i i 4bls) * 

The parameters q( uls), Q( uI y) are conditional probability 
mass functions on the alphabet U, and q’(xlu, s) is a 
conditional probability mass function on the alphabet X. 

A flowchart describing the algorithm is given in Fig. 3. 
Initially, q(uls) is set equal to an arbitrary positive 

transition matrix (e.g., q(uls) = l/llUll) and q’(xlu, s) is 
set equal to an arbitrary zero-one transition matrix. The 
main iteration cycles through each of the three arguments 
increasing F with respect to one argument while leaving the 
other two fixed. 

F is maximized over Q for fixed q and q’ by setting 
Q( u( y) equal to the conditional probability of u given y 

c c Pc4d4&t(xl~~ S)P(YlXT 4 

Q(“ly) = iGSiE; p(s)q(uls)q’(xlu, s)p(ylx, s) ’ 

For this value of Q, F = Z( U; Y) - Z( U; S). 

I INITIALI2Eq.q’ 
I 

MAXIMIZE F 
OVER q’ , BREAK 
TIES RANDOMLY 

REMOVEq’FROM B 

MAXIMIZE F 

Fig. 3. Algorithm for computing C,,,. 

To maximize F with respect to q’ we set q’(xlu, s) = 1 
for an x E X which maximizes 

n Q(~ly)~(~‘~‘~) 
YEY 

foreachuE UandsES. 
This implies that we can always assume that x is a 

deterministic function of u and s without loss of capacity. 
We define 

Ah Q> = (q’lq ’ is a 0- 1 matrix which maximizes F}. 

Finally, F is maximized over q by 

l’-i Qblv) &cxq’(~l~> SMYlX3 s)) 
q(uls) = yEy 

c n Qblv) GEXd(XI~, S)P(Ylh s)) . 
uGuY=y 

For fixed q’ 

u(q’, 4) = C p(sbax mm C PCYIX, 4 
S-ES UEU X6X yEy 

(where Qo( uI y) is given by (3.1)) forms an upper bound on 
F(q’, q, Q) which converges to F as F approaches a maxi- 
mum. The algorithm terminates with IC,,, - FJ < e, for 
any desired accuracy e > 0. 

We now discuss three examples of a memory with de- 
fects. The first example is an extension of the simple 
example discussed in the introduction. For this example, it 
is found that C,, < C,,, < C,,. The second example con- 
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s 

Fig. 4. Memory cell model for Example 1. 
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Fig. 5. Storage Capacity for Example 1: (P,, = ((1 + I/p) 

- {(l + l/j3)2 - Se//?)/4. (a) a = l/2; t = 0.11. (b)p = l/4; a = 
l/2; p = 1. (c) p = l/4; c  = 0.11; a = l/2. (d) p = 0.4; 6 = 0.11; 
p= 1. 

terns a  binary memory cell which behaves as one  of two 
binary symmetric channels. It is found that if the cross 
over probabilities are both less than l/2, C,, = C,,, < 
C dec = c,,. Thus no  increase in storage capacity can 
result from providing the encoder  with the defect state 
information. The  last example shows that sometimes C,,, 
’ cd.w 

Example 1: (Binary Cell with defects and  symmetric 
noise) The  memory cell mode l is depicted in F ig. 4. In F ig. 
5, plots are given of Cmb, Cm=, C,,,, and  Cd,,. We  note 
that the only capacity that varies with the parameter (Y is 
Cmin and  that only C,,, depends on  the parameter p. 

Example 2: (Two Binary Symmetric Channels (Fig. 6)) 
In F ig. 7, we give plots of Cmin, C,,, C,,,, and  Cd,,. If e1  
and  e2  are both less than l/2, then C,, = C,,, < Cd,, = 
C max. However, if e, < l/2, and  E* > l/2, then the en- 
coder can achieve rates higher than Cmin by complementing 
the input on  the s = 2  cells. 

Example 3: The  example depicted in F ig. 8  shows that 
there are cases where Cd,, < C,,,. For this example, C,, = 
0, Cd,, = 2/3, and  C,, = C,, = 1  bit/cell. 

P(S) 

735 

x P(Y/X,S) Y 

Fig. 6. Memory cell model for Example 2. 

1 P 0 112 1 P 

(a) @ I 
Fig. 7. Storage capacity for Example 2. (a) c, = 0; c  = 0.11. (b) z  = 0.01; 

z2 = 0.89. 

s  P(S) x P(YhA Y 

Fig. 8. Memory cell model for Example 3 

IV. CONCLUSION 

We have seen that the storage capacity of a  computer 
memory can be  improved by providing the encoder  or the 
decoder  with information about the permanent  defects. 
When  the encoder  or decoder  is provided with an  exact 
description of the locations and  nature of all defects we 
have established the capacity. However, except for the case 
pertaining to part d) of Theorem 2, the storage capacity of 
the memory with a  partial description of the defects is still 
an  open  problem. 
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APPENDIX I: 
PROOFOFTHEOREM 1 

The outline consists of three parts. For this discussion, we fix 
E > 0, alphabets U, S,, S,, S, and joint distribution 

PCS, so, se, Sd, u, x, Y) 

=P(s)P(so, se2 SdlS)P(U, XISO, Se)P(YlX, s>. 
The first part concerns the existence of three maps 

go: S” + s; 

g, : S” + &Yen 

g,: S” + s; 

such that if 

R, p ; log]]go]] > Z(S,; S) + 36 

R, p ; logllg,]] > R, + I(&; SlS,) + 46 

R, p ; log]]g2]l > R, + I(&,; S/S,) + 46 

R, + R, > R, + Z(S,, S,; SlS,) + I($; &IS,) + 66 

(Al) 
and n is sufficiently large, then 

P((go(Sh g,(S), &(S), s) E T,(so, se, x/j s>> ’ 1 - c. 

(A21 
Note that ]]g,]] = cardinal&y of the range of g, and S(r) > 0 is 
defined such that S + 0 as e + 0. (See [17] for a discussion of 
jointly typical sets q( .).) 

The proof of this result follows by showing that on the average 
the following construction obtains the desired maps [14], [15]. 
Choose independently a set of vectors (So), 1 < i < 2nRo accord- 
ing to a uniform distribution over the set T,(S,). For each 
1 Q i < 2nRo, independently choose two sets of vectors {Si’), 
1 <j < 2n(RI-Ro) and {Sjk>, 1 d k < 2n(R2-Ro) according to a 
uniform distribution over the sets T,(S,]Sd) and T,(S,]Sd), re- 
spectively. For each s E T,(S) look for an 1 < i < 2nRo, 1 <j < 
2n(R~-Ro) and 1 < k Q  2n(Rz-Ro) with (so, S;J; Sdk) E  
T,(S,, Se, S,ls). Set go(s) = S,$, g,(s) = S: and g2(s) = Sdk. 
For any s P i;(S) or if we cannot find such a triple, set g,(s) = 
S;, g,(s) = S,” and g2(S) = S;‘. 

With this construction, if S is drawn according to P(S = s) = 
II:=, p(s,) and (Al) is satisfied then (A2) will follow for 
sufficiently large n. 

The second part of the proof concerns the existence of two 
maps 

and 
J,: s; x s,n -+ {1,2”Re) 

Jd: s(y x s; + {1,2nRd) 

that can be used to label the ranges of three maps go, g,, and g, 
constructed in part 1 of the proof. Specifically we argue that for 
sufficiently large n, when 

R, ’ R, 
Rd > ma(R, - I(S,, S,; Y>, R2 - R. - I(&,; YIS,)) 

(A3) 
then given J,( go (S), g, (S)) we can find an estimate (So, Se) with 

p((%* $) = (go(S), g,(W) ’ 1 - f W) 

and given J,(g,(S), g,(S)) and the output vector Y we can find 
an estimate (So, Sd) with 

P((SO> $/) = (go(S), g,(S))) ’ 1 - (. (A5) 

The first map J, can be easily disposed of by recognizing that 
]]go, g,]] = ]]g,]] = 2’IRl. The existence of the second map Jd fol- 
lows by averaging the following random construction 
[17], [19], [20]. For each unique pair (go(s), g*(s)) independently 
choose Jd( go(s), gz(s)) according to a uniform distribution over 
the set of integers (1, 2nRd). Let (A3) be satisfied and choose 
(S, Y) according to the distribution IIz=,p(sZ, y,,,). Given 
Jd(go(S), g*(S)) and Y choose the estimate (So, S,) as any pair 
(go(s), g2(sN E Te(Soj &lY) with J~(go(s), g2(s)) = 
Jd( g,(S), g*(S)). Then if n is sufficiently large, (A5) will follow. 
By combining (Al) and (A3) we arrive at the desired bounds 

R, > Z(S,, Se; S) + 76 

Rd > ma{Z(so, Sd; S> - ~(SO, &; Y), I(& ; Wo)) 
-I( s,; Y&)} + 106 

R, + R, > m={Z(so, Se, Sd; S) 

-Z(So, s,; y), I(& ., s,; S ISO) 
-I( s,; YIS,)} + z( se; S&Y,) + 126. 

The final part of the proof concerns the last inequality of the 
theorem. This portion concerns the existence of maps 

f,: {1,2”R) x s; x s,n -+X” 

and 

fd:Yn x s; x s&J -+ (1,2”R}. 

such that when 

R < Z(U; Y, &IS,) - Z(U; Se/So) - 96 (A61 
and n is sufficiently large than for a random message W  E (1, 2nR) 

P(fd(Y,so,$) = W~X=~,(W’,~~,&)) > 1 -c. (A7) 

The following random construction will prove the existence of 
these maps. Let R, R’ satisfy 

Z(U; S&T,) + 46 < R’ < Z(U; S&T,) + 56 

R + R’ < Z(U; S,, YlS,) - 46. (A@ 
For each so E T,(S,), 1 < I < 2”R’ and 1 B w < ZnR indepen- 
dently choose a vector Us@ according to a uniform distribution 
over the the set T,(U]s,). For each (so, se) E T,(S,, S,) and 
1 < w < 2”R look for an 1 < I < 2”R’ such that U’Q’~ E 
T,(U]s,, se). Choose X according to a uniform distribution over 
the set T,( XIUQ”“, so, s,) and define fe(w, so, se) = X. For every 
other value of (w, so, se) set f,( w, so, se) = constant E X”. 

To construct fd, take each ( y, so, sd) E T,( Y, So, S,) and look 
for a unique 1 < I < 2nRf and 1 < w < 2”R with Us@ E 
~,(U]JJ, so, sd) and set fd( y, so, se) = w. For every other value 
of(~,s~,s~) setfd(y,so,sd) = 1. 

Under this construction, for sufficiently large n and a random 
message W  uniformly distributed over (1, 2nR) (A7) will be satis- 
fied. Combining (AS) we arrive at the desired bound (A6). 

APPENDIX II: 
PROOFOFTHEOREM.~ 

The achievability part of the theorem follows immediately by 
application of Theorem 1. The converse of the theorem is easily 
derived for parts a) and b) and has already been presented for 
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part c) [9]. The converse for part d) is derived here. The proof 
shows that for any (n, R, R,, R,, P,) code with R, > H(SIY), 
there exists an e > 0 and a random variable S, such that S -+ S,, 
-+ X as a Markov chain and 

R, a Z(S,; S) 
R Q  1(X; Y/S) +  c. (A9) 

(where y; = e , y- = [Y,,y,;.., y-11) 

q-i k;lS,) + c 1=l 
< f, I( xi; KlS,) + c (A121 

i=l 

Furthermore, e( P,) is defined such that e  --) 0  as P, + 0. 
First we need prove that the region of all rate triples 

( R , R e, H( S 1  Y)) achieved by Theorem 1 is convex in ( R , R .) for 
fixedp(s), p(y]x, s). Let 

A = ((R, Re)IRe > Z(S,; S), R < Z(X; Y/S), 

where 

P(S, so, x> Y) =P(~)P(~ol~)P(xl~o)P(Ylx~ s)), 
and 

Finally, since S, -+ Je,YS+Tx;,?&Ya ~~k~v!~~~?~y 
since W, J,, S,- , S,+ ; 

convexity of the achievable region, there exists a distribution 
p(sO]s)p(x]sO) such that (All) and (A12) imply (A9). 

APPENDIX III: 

B = {(R, R,)R, >  I(&; SlZ), R < Z(X; YIS, Z), 

where 

P( z, s,so, x3  Y) =P(z)P(~)P(~ol~~ Z)P(4SO? Z)P(YlX9 s>>. 

Apparently, B = convex hull (A). We  show A = B. Obviously 
A E B; we need to show B E A. Fix p(z)p(s,]s, z)p(x]s,, z) 
then (R, R,) E B for 

R, > 1( S,,; S]Z) = I( S,,, Z; S) ( independence) 

2 z(s,; S) 

DERIVATION OF ALGORITHM FOR C,,, 

Fix (S, p(s), X, p(yIx, s), Y), U and let 

pots> u, x, Y> =p(s)q(uls)q’(xlu> S)P(YIX, 3) (A13) 

be a probability mass function on S X U X X X Y. Then 

c c Po(S,U,X,Y) 

Q”(uly) = ;y”c po(s, 24, x, y) 
(A141 

SES UCUXEX 

is the conditional probability mass function of U given Y under 
(A13). Let Q(u]JJ) be an arbitrary conditional probability mass 
function, and define 

R < I( X; YIS, Z) <  I( X, Z; Y/S) 

=  I( x; YlS) (A15) 

since I( Z; Y]X, S) = 0. Thus (R, R,) E A and convexity is 
proved. 

and 

The entropy of the message random variable is 
H(W) = log(]W]] k nR 

by assumption. If we take 

c(P,> = P,R + $(P,), 

Qo(ulv) u(q',q) = C p (s)m=m= C P(ylx,s)ln q (u,s) i i . SE.9 xex uEuy,y 

(Ale) 

then we obtain the Fano’s inequality 

H( WIY, S) <  nr. (A 10)  
Note c > 0 and E + 0 as P, --) 0  as required. 

Now, let J, = J,(S) be the encoder’s description of the defect 
vector S, 

nR, g  H(J,) 

2  Z(J,; S) 

The derivation of the algorithm consists of four parts. First, we 
show C,,, = max,,max,maxyF(q’, q, Q). Second, we show how 
to maximize F  with respect to one argument when the other two 
arguments are fixed. Next, we show for fixed q’(xju, s) and 
arbitrary q( u]s) that max,max& q’, q, Q) < U( q’, 4). Finally, 
we show that F,, the value of F after the i th iteration of the 
algorithm converges montonically to F* = C,,, and F* = U* = 
the limit of CJj. 

Purt I: 

From Theorem 2c) and the identity 

F(q’, q, Q,) =  H(UIS) - H(W) = I(U; Y) - I(K S), 

we see that C,,, = max,,max,F(q’, q, Q,). Thus, we need only 
show that F(q’, q, Q,) 2 F(q’, 4, Q>: 

F(q’> 4, Q) - F(q’t qt Qo) 
= 2 [(J,, S: ; S,) ( independence), 

i=l 

whereS,T =q,S,’ = [S,+I,SI+2,..., $1. Then 

nR= H(W) 

= H( W lJ,, S) ( independence) 

< I( W; YIJ,, S) = nc (from AlO) 

(All) 

= C C C C Po(s,urx,y)ln Q(ulv> 
SES UE u XGX YE Y Qo(ulu) 

G  C C C C po(sji,x,Y) 
SE.!? UEU x=x ye Y 

[;y:,:-11-o. 

The last step follows from the inequality In x < x - 1. 
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Purt 2: 

The 
section 

inequality F( q’, q, Q) < F( q’, q, Qo) from the previous 
satisfies equality if and only if Q(uly) = Qo(uly) for all 

U, y withp,( u, y) > 0. Thus F is maximized over Q if and only if 
Q is given by (A14). 

To maximize F over q we form the functional 

G(q) = F‘(q’, qtQ> + c h( 1 - c 
SES UEU 

dub)). 
where the hs’s are Lagrange multipliers. Since G is concave in q, 
the maximum is found by setting the derivative of G to zero. 
Since 

8G 
~q(~obo> 

=P(so) c c q’(xIuo, So)P(YIX, so> x=x YE Y 

. ln Qtuolv) 
q(uolso) 

- 1 - Aso (A17) 
I 

G is maximized for 

n Q(uolv) L.d(XI%. %)P(YlX. %) 

duobo) = ycy 
c n Q(ulv) 

Lsx4’(xIu. ~O)PW~. so) . 
UEUYCY 

/ Note q > 0 as required. 
To maximize F over q’ we rewrite F as follows 

F(q’, 4, Q> = H(W) + c c c p(s)du G s)q’(xlu, s> 
scs ucu x=x 

.~~yp(ylx,s)lnQ(ulY). 

We see that F is linear in q’. Thus F is maximized for each u and 
s by setting q*(xIu, s) = 1 for an x which maximizes 
E.YE rp(ylx, s) In Q(uly). This shows that to achieve C,,,, we 
can always take x as a deterministic function of u and s. We 
restrict q’(xlu, s) to be a zero-one transition matrix and define 

A ( q, Q) = (q’lq’ is a zero-one matrix which maximizes F}. 

Note that 1 d IlAll G  IIXll~~~xs~~. 

Purt 3: 

Fix q’( x/u, s), q( uls), 4( uls) and define 
/ 

U’(q’, 4, q> = c c c P(S)d4S)4(4U, $1 
J-ES UEuyeY 

.p(Ylx, s)ln ?{;‘;’ , 
US 

where Q,( uly) is the conditional probability mass function un- 
der 4( u < s). 

First, it is clear by the definitions that U’( q’, q, 4) < U( q’, 4). 
We show that F(q’, q, Q) < U’(q’, q, q). 

F(q’, 4, Q) - U’(q’, 4, 4) 

= C C C C pots9 u, x,y)ln Q(ulY)B(uls) 
s~su~zJxGxy~Y duls)Qo(uly) 

G c c c c PO(S~U~X~Y) Q(4~)4(4s) _ 1 = o, 
SES UE u xex YE Y cl(uls)Qo(ulY) 1 
We derive necessary and sufficient conditions for F(q’, q, Q) 

= U(q’, q). First, F(q’, q, Q) = U’(q’, q, q) if and only if for 
every u and y with po(u, y) > 0, we have Q(uly) = Qa(uly). 

Thus Q must maximize F for fixed q’ and q. Second, F is 
maximized over q if and only if 

C C q’(W s)p(Ylx, s)ln 
X‘zxyEY 

dub) ’ 0 
dub) = 0 

where Cs depends only on s. This follows from (A17) and the 
Kuhn-Tucker conditions. Thus 

F(q’, q> Q> 

with equality if and only if q maximizes F, 
Finally, from Part 2, 

F(q', 4, Q) 
Q(ulv> 

with equality if and only if q’ maximizes F. Thus; we have 
F(q’, q, Q) < U(q’, q) with equality if and only if F is maxi- 
mized over q and Q with q’ fixed and F is maximized over q’ and 
q and Q fixed. Note, this does not guarantee that F = C,,,, since 
the q’ which maximizes F may not be unique. However, if 
F(q’, q, Q) = U(q’, 4) for every 4 E 4% Q>, then F = G,,. 

Part 4: 

First, we show that we can maximize F over q and Q for fixed 
q’. Define 

P(YlU, s) = c q’(xlu7 S)P(YlX7 $1, 
XEX 

c P(s)q,(4s)P(Yl% s> 

Qr(uly) = iE; p(s)q,(u~s)p(yJu,s)’ 
ses UEU 

r,+ 1 (UIS) = yvyQi( U(S)p(y’u’s), 

‘I+I(4s) 
qf+l(u’s) = u;ur,+,(u/s) ’ 

and 
F ?+I = F(q’, qi+l, Qt>. 

We show that if q,(ujs) > 0 then 

lim I;I = C P ,~u”i”,Z( U; Y) - Z(U; S). 
i+cc s 

Let 

and 

P*(s, u> Y> =P(~)q*(uls)P(Ylu2 s) 
be probability mass functions on S X U X Y and assume q*( uls) 
achieves C. Consider 

Qj(ulv> c r,+,(W) 
F ,+, = C C C zh+l(s,uty)ln 

UGU 

scs UclJy~Y ri+l(4s) 

= sICsp(s)ln C r,+l(uls). 
UEU 
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Now, 

C C P(s)q*(uls)ln “~~~$’ 
SC.9 UEU 

= C C p(s)q*(uls)ln q,,.,~+~“~~+~,,uls, 
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