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Cross Parity Check Convolutional Codes 
TOM FUJA, MEMBER, IEEE, CHRIS HEEGARD, MEMBER, IEEE, AND MARIO BLAUM, MEMBER, IEEE 

Ahstrrrct-A class of convolutional codes called cross parity check 
(CPC) codes, useful for the protection of data stored on magnetic tape, is 
described and analyzed. CPC codes are first explained geometrically; their 
construction is described in terms of constraining data written onto a tape 
in such a way that, when lines of varying slope are drawn across the tape, 
the bits falling on those lines sum to zero modulo two. This geometric 
interpretation is then formalized by the construction of canonical parity 
check matrices and systematic generator matrices for CPC codes and by 
computing their constraint lengths. The distance properties of CPC codes 
are analyzed, and it is shown that these codes are maximum distance 
separable (MDS) convolutional codes. In addition, examples are given of 
both error and erasure decoding algorithms that take advantage of the 
geometric regularity of cross parity check codes. Finally, the technique of 
parity check matrix reduction-useful for reducing the inherent decoding 
delay of CPC codes-is described. This technique consists of dividing each 
term of the parity check matrix by some polynomial and retaining only the 
remainder. A class of polynomials which are particularly attractive for this 
purpose is identified. 

I. INTRODUCTION 

T HIS PAPER describes a class of convolutional codes 
called cross parity check (CPC) codes. The intended 

application of these codes is the protection of data stored 
on magnetic tape. 

Until recently, most error control schemes implemented 
on magnetic tape involved the use of block codes-most 
typically, a Reed-Solomon (RS) or other BCH code [l]-[3]. 
However, the recent literature [4]-[7] has provided exam- 
ples of how convolutional codes can be used in this capac- 
ity; the error control techniques described in [4]-[7] are 
based on simple geometric ideas-specifically, the imposi- 
tion of parity constraints on data falling on lines of vary- 
ing slope throughout the tape. One attractive advantage 
such techniques have over block codes is that they avoid 
the expensive necessity of performing operations over non- 
binary fields; all syndrome computations can be imple- 
mented with XOR gates. 

Cross parity check codes evolved from the codes de- 
scribed in [4]-[7]. Our goal has been to examine the 
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algebraic structure of such “geometrically inspired”’ con- 
volutional codes to see what kinds of insights can be 
gained. In this paper we formalize the geometric interpre- 
tation of CPC codes and examine their distance properties. 
In addition, we give examples of ways in which the geo- 
metric regularity of cross parity check codes can be used to 
provide simple decoding algorithms. Finally, we introduce 
the idea of parity check matrix reduction as a means of 
constructing new convolutional codes from old ones. 

A Summary of Results 

In this paper we propose and analyze a class of “geo- 
metrically oriented” convolutional codes with one particu- 
lar application in mind-the protection of data stored on 
magnetic tape. Toward this end, the following results are 
established. 

1) A set of codes called cross parity check codes are 
defined. The particular code CP(n, k, m) is an (n, k) con- 
volutional code with the following geometric interpreta- 
tion. If the n binary sequences making up a codeword of 
CP(n, k, m) are written onto the n tracks of a magnetic 
tape, then the bits falling on every line of slope l/j must 
sum to zero modulo two, where j takes on the n - k 
different values, j = m, m - 1, m - 2,. . . , m - (n - k - 1). 
This geometric interpretation is formalized by considering 
CP( n, k, m) as a k-dimensional subspace of n-tuples of a 
Laurent series. with binary coefficients; a nicely “canoni- 
cal” parity check matrix for CP(n, k, m)-that is, a matrix 
whose null space is CP(n, k, m) and whose rows reflect the 
geometric constraints-is identified. 

2) For magnetic tape channels, the most useful measure 
of performance is not free distance but minimum distance. 
Cross parity check codes are optimal in the following 
sense: CP(n, k, m) has minimum distance n - k + 1, the 
largest possible value of any (n, k) convolutional code; in 
other words, the Singleton bound is achieved, and so CPC 
codes are maximum distance separable. 

3) The geometric regularity in cross parity check codes 
makes it possible to compute a closed-form systematic 
generator matrix for CP(n, k, m). In addition, the minimal 
constraint length of CP(n, k, m)-a measure of the com- 
plexity of the encoding operation-is computed as k(’ ; ‘1 
-km(r-l-m). 

4) A general erasure decoding algorithm for CP( n, k, m) 
is described, along with a two-error correcting algorithm 
for CP(n, n -4,l). 

5) Parity check matrix reduction-dividing each term in 
a parity check matrix by some polynomial in D and 
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retaining only the remainder-is introduced as a means of 
constructing new convolutional codes from old ones; the 
motivation here is the reduction of the delay inherent in 
decoding CPC codes. It is shown that, if a  CPC code is 
“reduced” with a polynomial of the form Dj + 1 for odd 

j 2  n, then the resulting convolutional code is maximum 
-distance separable and retains a certain geometric regular- 
ity. 

(a) 

II. DEFINITIONSAND BACKGROUND 

We begin by giving a geometric interpretation of cross 
parity check codes; we then use that interpretation to 
define CPC codes formally in terms of a parity check 
matrix. In addition, we compare CPC codes with similarly 
defined error control codes described in the literature and 
outline the problems to be considered in this paper. 

A. A Geometric Interpretation of Cross Purity Check Codes 

An n-track binary magnetic tape can be modeled as a 
strip A,, where 

An= { a,j: 0  5 i I n  -1, -m<j<co, azjE {O,l}}. 

The interpretation is that for fixed i (0 I i I n  -1) 
{ aij: - cc < j < + co} are the contents of the ith track on 
the tape. It is assumed that there exists some j, such that 
aii = 0 for all i and for all j < j,; that is, the tape has 
some beginning, before which all the data are assumed to 
be zero. 

Definition: Consider an n-track magnetic tape, as al- 
ready described. We  say such a tape is encoded with 
CP(n, k, m) if 

,I -1 
Ca .=O r,/+ar 

i=o 
for all j, - co< j<+cc, and for a=m,m-l;..,m- 
(n - k - 1). (Addition is modulo-two.) 

The geometric interpretation of these codes consists of 
constraining the data written onto the tape so that when 
lines of varying slope are drawn across the tape, the bits 
falling on those lines sum to zero modulo two. Specifically, 
for a CP( n, k, m) encoded tape, we require that the bits on 
a line of slope x across the tape sum to zero modulo two, 
where 

i 

1  1 1 
XE - 

m’m-1’ I ‘m-(n-k-l) . 

(In our notion of “slope,” we assume that track 0 is the 
“bottom” track and track n - 1  is the “top”; in addition, a 
slope of + cc (i.e., l/O) corresponds to a parity check 
straight across the tape.) Thus there are n - k slope con- 
straints; m  is the parameter that tells us how many of 
these constraints involve positive slopes. We  will see later 
in this section that these n - k constraints can be imposed 
through the addition of n - k redundant tracks; thus a 
magnetic tape encoded with CP(n, k, m) contains k data 
tracks and r = n - k redundant tracks, and so CP(n, k, m) 
has a rate of k/n. Fig. 1  shows the parity check patterns 
for three CPC codes. 

(b) 

(4 
Fig. 1. Some examples of parity check patterns for CPC codes. (a) 

CP(n,rt-4,0).(b)CP(n,n-4,1).(c)CP(n,n-5,2). 

B. A Formal Description of Cross Parity Check Codes 

Let F  = (0, l} be the binary field, and define F[ D] to be 
the set of all polynomials in D with coefficients in P, 
further, let F(D) denote the field of quotients of F[ D], 
consisting of all ratios of polynomials in F  with nonzero 
denominators [lo], [ll]. In a similar vein, let F[[D]] be the 
set of power series over F; that is, 

F[[D]] = f(D) = 2 aiD*: 
1 

a,E {OJ} . 
i=o I 

We  can extend F[[ D]] to a field consisting of the quotients 
of F[[D]]. This field is called the Laurent series over F, 
and we denote it by F((D)). It can be shown [18] that this 
field is isomorphic to the field consisting of all “one-sided” 
sequences of ones and zeros. That is, 

F((D)) = f(D) = f aiD’: 
1 

a,E {O,l}, rEZ . 
,=r I 

Since convolutional codes are simply sets of “permissible” 
n-tuples of binary sequences, we can describe them equiva- 
lently as sets of n-tuples over F((D)). We  use this equiva- 
lence throughout this paper; when we speak of “writing” a 
Laurent series f(D) onto a magnetic tape track, we mean 
storing the associated binary sequence as the track con- 
tents. 

The last structure of interest will be F;,(D), the set of 
realizable transfer functions. F,,(D) is a subring of F(D) 
and consists of those ratios of polynomials whose denomi- 
nators (after reduction to lowest terms) are not divisible by 
D; equivalently, Frz( D) is made up of those functions that 
are in both F(D) and F[[D]]-i.e., F,,(D) = F(D)n 
F[[D]]. It can be shown [lo] that these are exactly the 
transfer functions that can be realized by causal finite state 
circuits; that is, g(D) E F;,(D) if and only if it is possible 
to construct a circuit such that if x(D) E F((D)) is the 
input, then x( D)g( D) is the output. 
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Definition: An (n, k) binary convolutional code is any the canocial parity check matrix for CP( n, n - 4,1) is given 
k-dimensional subspace of F”(( D)) over F(( D)) that has a by 
basis in F?z( 0). 

Note that this definition is equivalent to the “usual” 

i 

Dtl-1 DllP2 Da-3 . . . 1 
definition of an (n, k) binary convolutional code as the set I 1 . . . 

of all possible outputs of a k-input n-output time- 
HI = 

1 ;2 ... $1 ’ 

invariant linear causal finite-state sequential binary circuit 1 ;2 04 . . . D2(“-‘) 1 
W I. and the one for CP(n, n -5,2) is 

Dz(n-1) Dan-2) D&n-3) . . . D2 1 
D”-’ OH-2 on-3 . . . D  1 1 

Hz= 1 

/ 

1 
1 It2 
1 D”’ D4 

Definition: For any (n, k) convolutional code C, let H 
be a (nonunique) (n - k) X n matrix over Fr,( D) such that 

c= {c=[co,cl,~~~ ,c,,pl] EF”((D)): EHT=O}. 

Then H is a purity check matrix for C. 
A parity check matrix for CP(n, k, m) can be con- 

strutted as follows: let 

Ho = 
1 

04 ;2 . . . ,:-l 
04 . . . D%n-1) 

1 1 . . . 1 

1 Dilpk&l D&n-k-l) . . . D(n-k-l)(n-1) 

This matrix is a parity check matrix for CP(n, k, m  = 0). 
To see this, suppose that C = [co, ci,. * . , c,-J E F”(( 0)) 
satisfies ZHT = 0, and further that ci is given by 

cc 
c, = c c,,,Dj. 

j = r, 

Then the first row of Ho implies that C::$i, j = 0 for all j. 
That is, if c, is written onto the ith track of a magnetic 
tape for i = 0,l; . ., n - 1, then the bits falling on any line 
drawn straight across the tape sum to zero modulo two; 
the “infinite” slope constraint is met. Similarly, the second 
row of Ho imposes the slope - 1 constraint, the third row 
imposes the - l/2 constraint, and so on until the bottom 
row of H,, imposes the constraint that the bits falling on 
any line of slope - l/(n - k - 1) must sum to zero mod- 
ulo two. 

In a similar way we can construct “canonical” parity 
check matrices that reflect the geometric constraints for 
CP(n, k, m) for nonzero m; we will denote this matrix by 
H,,,. As examples, consider the three CPC codes shown in 
Fig. 1; the canonical parity check matrix for CP( n, n - 4,0) 
is given by 

rl I 1 . . . I 1 
D D2 ... D”-’ 

02 04 . . . D2(n-1) ’ 

03 06 . . . D3(n-1) 
I 

. . . 1 1 . 

. . . D”-1 D”-1 

. . . D2(,1-1) Dz(n-1) / 

In general, we can obtain H, from Ho as follows. Let 
‘k, be the n X n matrix 

!I!,, = diag [l, D, D2, D3, . . . , Dn-‘] 

andform,O<m<n-k-l,definethe(n-k)X(n-k) 
matrix a’, given by 

@ , = diag [ ~“‘(“p’), ~(mpl)(npl), D(m-Z)(n-l) 

(Here, diag[x,, x2,.. ., xi] is defined as the j x j diagonal 
matrix with {xi; . ., x, } on the diagonal.) Then, the 
canonical parity check matrix for CP(n, k, m) (0 < m  I 
n - k - 1) is given by 

(Note: The constraint that m  be at least zero, and no 
greater than n - k - 1 is, in our geometric description, 
equivalent to requiring that one of the parity check lines be 
straight across the track (i.e., have a slope of + 00). While 
the generalization to larger or smaller m  is obvious, it is of 
questionable practical value, and so we henceforth assume 
thatO<m<n-k-1.) 

H, is of full rank; that is, its rows span a subspace of 
dimension n - k. (In fact, in Section III-B we will prove 
the stronger fact that every n - k columns of H,,, are 
linearly independent.) This means that CP( n, k, m)-de- 
fined as the null space of H,&is of dimension k, and so 
CP( n, k, m) is an (n, k) binary convolutional code. This 
verifies our earlier claim that by adding r = n - k redun- 
dant tracks to k data tracks, the n - k slope constraints of 
CP(n, k, m) can be imposed. 

C. Previous Work 

Cross parity check codes were motivated by and evolved 
from error control techniques devised by Prusinkiewicz 
and Budkowski [4], Pate1 [5], [6], and Blaum [7]. One goal 
of our research has been to take “geometrically inspired” 
error control techniques such as those described in [4]-[7] 
and place them firmly within the context of convolutional 
codes by considering their algebraic structure. 



In this paper we consider the following problems. 

1) What distance properties are important for codes to 
be used in longitudinal magnetic tape applications? 
How do CPC codes compare to other convolutional 
codes with respect to these properties? 

2) How can we construct encoders for CPC codes? 
This problem is important because, as mentioned in 
Section II-C, earlier “geometric” convolutional 
codes [5]-[7] were designed to make the encoding 
process trivial; this, however, resulted in a nonopti- 
ma1 design as far as decoding and distance proper- 
ties. Since CPC codes were designed without regard 
for the encoder, the effect of the design on the 
encoding process should be investigated. 

3) How complex are CPC encoders? What are their 
constraint lengths? 

4) How can the geometric properties of CPC codes be 
used for decoding? 

5) How can the method of parity check matrix reduc- 
tion-introduced by Piret and Krol [13]-be used 
to construct other MDS convolutional codes with 
geometric regularity? 

III. IMPORTANT DISTANCE PROPERTIES 
OF PARITY CHECK CODES 

Section II the geometric nature of cross parity check In I I 
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Like CPC codes, the techniques described in these ear- 
lier papers were defined in terms of constraining data so 
as to meet parity slope conditions. Prusinkiewicz and 
Budkowski [4] described a code for magnetic tape that is 
essentially a “blocked” version of CP( n, n - 2,0). Pate1 
developed an error control technique that is geometrically 
similar to CP(n, n - 3,l) [5]; he then altered that technique 
to construct a code that was implemented on IBM’s 3480 
tape subsystem [6]. Blaum [7] used similar ideas to describe 
a class of convolutional codes that bear some resemblance 
to the class of “balanced” CPC codes-i.e., CP(n, k, 
l(n - k)/21). 

One difference between CPC codes and the codes de- 
scribed in [5]-[7] is that the parity check lines defining the 
codes in [5]-[7] are not taken over the entire width of the 
tape. This was done to provide a more transparent encod- 
ing process; however, it came at the expense of a more 
complex decoder. 

Finally, note that, concurrently with the evolution of the 
codes described earlier, papers appeared concerning so- 
called orchurd codes [8], [9]. These form a class of rate 
(n - 1)/n codes that bear some resemblance to CPC codes 
in that they are described in terms of meeting a single 
geometric parity constraint. 

D. Problems Addressed 

codes was formalized by the introduction of certain alge- 
braic structures and the construction of canonical parity 
check matrices. In this section this formality will be used 
to investigate the distance properties of CPC codes. 

1261 

A. On the Minimum Distance of a Convolutional Code 

On a longitudinal magnetic tape system, data are stored 
at a very high linear density on tracks that are relatively 
far apart from one another. This arrangement means that 
errors tend to come in bursts along tracks, with little 
correlation of errors ,between tracks. Piret and Krol [13] 
have suggested that, for codes to be used on channels 
exhibiting this kind of behavior, the important parameter 
is not free distance but rather what they call minimum 
distance. 

Definition: The track weight of an n-tuple over any field 
is the number of nonzero components in that n-tuple. 

(Note: We indicate the track weight of the n-tuple U by 
]U[; from this definition it is obvious that 0 I ]U] I n.) 

Definition: The track distance between any two n-tuples 
is the track weight of their difference. 

Definition: The minimum distance of a convolutional 
code is the smallest track distance between any two code- 
words in that code; for any code C denote the minimum 
distance of C by d(C); then 

- - 
d(C) =min{]Y-j]:x,yEC, X#J} 

=min{]G]: GEC, ZiZO}. 

Note that this definition is different from the “usual” 
one for minimum distance; more commonly, the minimum 
distance of a convolutional code is defined as the Ham- 
ming weight of the lightest (in the Hamming weight sense) 
segment of any codeword, where the length of the segment 
is equal to the constraint length of the code. (See, for 
instance, [17].) The definition of minimum distance used 
here is the one given by Piret and Krol [13] and is 
analogous to the use of the same term for block codes. 

Consider, then, an n-track magnetic tape encoded with 
an (n, k) convolutional code C of minimum distance d(C). 
Assume that a possibly noisy version of this tape is read 
and that all the errors caused by the noise occur on s I n 
of the tracks; that is, s tracks contain errors and n - s 
tracks are error-free. Then, as long as s 5 t = 
]( d( C) - 1)/2], there is exactly one codework in C that is a 
track distance of at most t from the received n-tuple. We 
will call such a code a t-error-correcting convolutional 
code because if all the errors are restricted to at most t 
tracks, then it is possible to recover the original codeword 
by simply mapping the received n-tuple to the closest (in 
the track-distance sense) codeword. In a similar way, if we 
designate a track as being erased when it has been labeled 
unreliable by an external source, it can be shown that a 
convolutional code C is capable of simultaneously correct- 
ing e erased tracks and t unerased tracks containing errors 
provided 2t + e 2 d(C)-1. 

B. Cross Purity Check Codes are Maximum 
Distance Separable 

Consider an (n, k) convolutional code C with parity 
check matrix H. The minimum distance d(C) is equal to 
the smallest number of linearly dependent columns of H. 
Since the number of linearly independent columns in a 
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matrix is equal to the number of linearly independent rows 
[12], and H has only n - k rows, we have the following 
inequality, known as the Singleton bound: 

d(C)<n-k+l. 0) 

Any convolutional code for which (1) holds with equality 
is called a maximum distance separable (MDS) convolu- 
tional code 1131. 

Theorem 1: CP(n, k, m) is MDS. 

Proof: Equation (1) holds with equality if and only if 
a parity check matrix for C is totally non-singular -that is, 
if an only if each (n - k) X (n - k) subarray of a parity 
check matrix is invertible. Thus we want to show that each 
of the ,,rn ( 1 different (n - k) x (n - k) minors of H, is 
nonzero. (Here, an r X r minor of an i X j matrix is the 
determinant of an r x r subarray of that matrix.) To this 
end define for an arbitrary p X q matrix A the p X j 
matrix A[i,, i,; * ., ijpl ] obtained by selecting columns 
10,11,’ . .,1,-l from A. (Here, O<i,<i,< ... <ijpl<q.) 
Then any subarray of H, can be factored into 

H,,[io,i,,-..,i,,~k-l] =iPmHO[io,i,,...,i,_k~,]A” 

where A = diag [ D-‘o, De’*; . . , D-in-k-l]. Furthermore, 
a, and A”” are both (n - k) x (n - k) diagonal matrices 
with nonzero determinant; thus we can restrict our atten- 
tion to matrices of the form H,[i,, il;..,inpk-J. How- 
ever, 

det(Ho[io,~~~,i,,~k-l]) 

= det 

D(t1-k-l)!0 D(-k-l)& . . . D(n-k--l)i,-kml 

1 1 . . . 1 
D’O D’I . . . Din-k-1 

D 7-k D2il . . . D%-1 

= ,l,,( D’a + 0’“) # 0 

because the above determinant is Vandermonde. Thus all 
(n - k) x (n - k) minors of H,,, are nonzero, and the theo- 
rem follows. Q.E.D. 

It is worth noting that the convolutional code imple- 
mented on IBM’s 3480 tape subsystem [6] is not MDS; 
even though it uses four parity tracks, it is only capable of 
correcting half of the two-error configurations. This is 
because the fourth parity constraint was formed by 
“breaking” the vertical slope constraint into two parity 
checks, each going halfway across the tape; this means that 
if two errors occur in the same half of the tape, then the 
configuration is not correctable. 

IV. ENCODING CROSS PARITY CHECK CODES 

In this section we address two issues related to the 
construction of encoders for cross parity check codes. 
First, a class of systematic generator matrices for CPC 

codes is developed. Then, the minimal constraint length of 
CP( n, k, m)-a measure of the complexity of the encoding 
process-is calculated. In each case, the highly regular 
structure of cross parity check codes makes it possible to 
compute closed-form expressions for quantities which in 
general may only be computed iteratively. 

A. Systematic Generator Matrices for CPC Codes 

We begin by reviewing some terminology and ideas 
regarding convolutional code generators. 

Definition: A generator for an (n, k) convolutional code 
is any k x n matrix over &(D) such that the rows span 
the code over F((D)). 

We will concentrate our effort on the construction of a 
systematic generator. Such a generator is one which, when 
implemented, causes the k message sequences to be repro- 
duced exactly in the code sequences. One way this can be 
accomplished is by embedding a k X k identity matrix in 
the generator matrix. To this end, for any given n, any 
k<n, any m, O<m<n-k-l, and any x, O<x<r= 
n - k, define G,,, x , to be the k x n matrix over li( D) such 
that 

a) CP(n,k,m)= {WC,,,: i?~p~((D))}, 
b) G,,,,, = [ZoZ1 . + . Z,-lZkz,. . . z,-i] 

where Z, is the k X k identity matrix, and the ZJ’s are 
column k-vectors over F(D). G,,, x is a matrix with rows 
spanning CP(n, k, m) and containing the identity matrix 
in columns x through x + k - 1. The goal is to choose x so 
that all the components of all the z/‘s are realizable, and 
thus make G,,, x a valid systematic generator matrix for 
CP( n, k, m). This goal is realized in the following theorem. 

Theorem 2: The matrix G,,, as defined earlier is realiz- 
ableforx=r-m. 

Proof: The proof is given in the Appendix. Here we 
extract the portions of the proof that are necessary to give 
a closed-form expression for G,, r~ nz. 

First, consider the case m  = 0. If we define Z to be the 
k X r matrix consisting of Go,, with the identity removed, 
then it is shown in the Appendix that 

Z = Qk,,\k,XP-I, (2) 

where ‘k, = diag[l, D, D2;. ., Dr-‘], QaTh is the a x b 
matrix 

Q&b= 

and 

1 1 . . . 1 
1 D . . . p-1 

1 D2 D4 . . . D%b-l) 

1 Do-1 D2(U-1) . . . D(u-l)(b-l) 

Q p= ----“C-- I 1 Q _ P+k r x,i- i- 

(3) 
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Most of the Appendix consists of a  proof that 2, as 
formulated in (2) is realizable. 

For nonzero m, we claim that 

G,,, = D-Xm~~mGo,x\knm, (4 

where ‘k, = diag[l, D, D2; . ., Dipl]. This can be readily 
verified, since 

= D-xm~;mGo ,H,,% m 

zz 0, 

and the multiplication leaves columns x through x + k - 1  
unchanged. It is shown in the Appendix that G,,,, is 
realizable for x = r - m. Q.E.D. 

For the rest of this paper, we will define for a given n, 
k<n, and m, O<m<n-k-l, the matrix G, to be 
G m,r-rn’ Thus, by Theorem 2, G, is a valid systematic 
generator for CP(n, k, m). 

At this point it is illuminating to consider an example. 
We  begin by constructing a generator matrix for CP(5,2,0). 
From Theorem 2, we know that to construct a systematic 
generator for such a code, we embed an identity matrix in 

Fig. 2. Encoding circuit for CP(5,2,1). 

Similarly, we can use the results from this section to 
construct a systematic generator for CP(5,2,1). In this 
case, Theorem 2 tells us to place an identity matrix in 
columns 2 and 3; the matrix G, = G, 2 is computed in 
accordance with (4). We  first construct Go,, as follows; let 

Z= 

= 

D3 D+D3 1 
1+D2 l+D+D2 l+D+D3+D4 

D4 

1+D2 
D2 

Then 

c D3 D+D3 

“,a’ l+D+D2 ’ ’ l+n+ID3+D4 

D2 01 
1 

1+D2 1+D2 

1269 

c, 0 

1 

1+D2 

and so from (4) the generator matrix for CP(5,2,1) is given by 

1 0 
G,= D-2 

0 ; 

I. 

It is possible to shorten the construction given above by 
columns 3 and 4; hence, from (2) forming the generator matrix G,,,,-, directly, rather than 

z= [: k A[: i3 j.][; i2 811’ 
first constructing G,,,-,,. We  use this “shortcut” in the 
following summary of the results in this section. 

To construct a systematic generator matrix for CP(n k m> l> compute 
>> 3 

= D3+D4+D5 [ 
D3 D+D2+D3 l+D+D2 

D+D5 1 l+D+D3+D4. 
Z  = D~(r~f, l)nl~~~n7Qk,,\k,‘~m [ I Qr-m,, -lrm  

QdYrn 
Thus our systematic generator for CP(5,2,0) is 

Go- 
i 

D3 D+D2+D3 1+D+D2 1 0 
D3+D4+D5 D+D5 l+D+D3+D4 0 1 1 

A circuit that implements this encoder is shown in Fig. 2. 
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where 

\k,=diag[l, D, D2;*., D(‘-‘)I 

r = diag[l, D, D2;. ., Drpm-‘, Dr-m+k, 

D’- m+k+l . . . 
, , D--l]> 

and Q,,h is given in (3); 2) let Z,, Z1; . 1, ZrA1 be the 
columns of Z. Then set 

G, = [?,t, . . . ,?_,-llk~,_,+1 ‘. ’ 2,-l]. 

B. On the Constraint Lengths of CPC Codes 

A common measure of the complexity of a convolu- 
tional encoder is the constraint length. In this section we 
will compute the constraint length of CP(n, k, m). 

Let G be a k x n matrix over P[D] and let { glj( 0): 
Osilk-1, O<j<n-1) be theelements of G; gij(D) 
is a polynomial in D with binary coefficients. 

Definition: The constraint length for the ith input of G 
is given by 

v; = max {de&@)]} 
O<j<rt-1 

and the overall constraint length of G is given by 

k-l 
vc = c v,. 

J=o 

The interpretation of vc is simple. Suppose that G is 
used as the generator of a convolutional code; that is, a 
message E E Fk(( 0)) is mapped onto C = EC. This gener- 
ator can be immediately realized with k shift registers, the 
ith of which has length vi. Thus vc indicates how many 
memory components are necessary to implement an en- 
coder using this obvious realization. 

Definition: For a convolutional code C the minimal 
constraint length of C is the overall constraint length 
“simplest” polynomial generator for C; that is, if we 
denote the minimal constraint length of C as N(C), then 

N(C) =min{v,: C= (6iG: FEEF~((D))}, 

Gpolynomial} . 

Forney [lo] showed that, for any code C, no generator 
-either polynomial or not-can be constructed with fewer 
than N(C) memory elements. However, any systematic 
generator-like the ones developed for CPC codes in 
Section IV-A- can be constructed with N(C) memory 
elements, although this might not necessarily be possible 
using the obvious realization. 

Fuja [19] showed that the overall constraint length for 
CP(n,k,m=O) is k “ih 

i 1 
. Abdel-Ghaffar subsequently 

generalized Fuja’s result for all m [20]. Theorem 3 is 
therefore by Abdel-Ghaffar. 

Theorem 3: The overall constraint length of CP(n, k, m) 
is given by 

Proof: Forney [lo] showed that the overall constraint 
length of an (n, k) convolutional code is equal to the 
maximum degree of any of the r x r minors (r = n - k) of 
a basic parity check matrix for the code. (A matrix is basic 
if it is a polynomial matrix and has a right-inverse that is 
also a polynomial matrix.) Furthermore, every parity check 
matrix has an invariant factor decomposition; that is, an 
r x n parity check matrix can be expressed as the product 
of an r x r basic matrix, an r x r diagonal matrix, and an 
r x n basic matrix that is a parity check matrix for the 
same code. The r X r diagonal matrix has as its diagonal 
elements the invariant factors of the original parity check 
matrix; if Xi is the i th diagonal element, then h, = 
A,/A,-i, where A, is the GCD of.the ix i minors of the 
original matrix. 

Consider the invariant factor decomposition for H,; 
that is, factor H,,, into 

H,,,=AI@,, 

where A is a basic matrix, I’ is a diagonal matrix with the 
invariant factors of H, on its diagonal, and & is a basic 
parity check matrix for the code CP(n, k, m). Then the 
overall constraint length of CP( n, k,m) is the highest 
degree of any of the r X r minors of H,; since A is basic, 
lhl =l and so 

N(CP(n, k, m)) = max{deglhl: h E Q} -deg(lI’l), 

where Q is the set of all r x r subarrays of H,. The 
determinant of r is the product of all the invariant factors 
of H,, which is just the GCD of all the r x r subarrays of 
H,. Therefore, 

N(CP(n, k, m)) = max {deglh(: h E Q} 

-deg(GCD{Ihl: hEQ}> 

=max{degl~,H,[i,;..,i,_,]A”I: 

OSi,< ... <i,-,In-1) 

-deg[GCD{]@,H,[i,;.*,i,-,]Aml: 

Oli,< ... <i,-,In-l}] 

where H,[i,; . ., irpl], a,, and A are as defined in Theo- 
rem 1. Since a,,, does not depend on the ij’s, we conclude 

N(CP(n,k,m)) =max{deg~Ho[i,;~~,i,~,]A”(: 

O<i,< ..f <i,-,ln-1) 

-deg[GCD{(H,[i,;..,i,-,]A”\: 

Oli,< ... <i,_,In-l}]. (5) 

By inductions on r we can show deglH,,[i,; . *, i,-ill = 
i1+2i2+ .-. +(r -l)i,-,, and so 

deg)H~[i,;..,i,-,]Aml 

= (-m)i,+(l-m)i,+ ... 

+(O)i,+ ... +(r-1-m)i,-,. 

This maximized by setting ij = j for j = 0,. . 1, m and 
i, =n -r + j for j=m+l;..,r -1. Plugging these val- 
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ues into our expression for deglH[i,; . ., ir-l]Aml, we find 

max{deglH,[i,,...,i,~,]Aml:O~i,< ... <i,-,<n-I} 

= [n(r-m-l)(r-m)l2] 

-[(r-m)(r-m-l)(r-m+1)/6] 

-[m(m-l)(m+l)/6]. (6) 
We  now find the degree of the GCD of all the r X r 

minors of Ho Am. Any minor of HaA” is a minor of Ho 
times a power of D. We  can express the GCD of the 
minors of H,, as D”p(D) for some integer a and some 
polynomial p(D) such that p(0) = 1. Therefore, the GCD 
of the minors of H,A”’ is Dhp( D) for some integer b; 
since the delay of p(D) is zero, b is just the delay of the 
GCD of the minors of HoAm. (Note: The delay of a 
Laurent series f(d), denoted del[ f( D)], is the lowest 
power of D in f(D).) Therefore, 

deg[GCD{IH,[i,;..,i,_,]A”l:O~i,< ... <ir-l}] 

=del[GCD(lH,[i,;..,i,_,]Aml: 

O<i,< ... <i,-l}]+deg[p(D)]. (7) 
The delay of the GCD of the minors of HoAm is the 

smallest delay taken over all such minors. Induction on r 
shows that 

dellH,[i,; . ., i,-, ]I=(r-l)i,+(r-2)i,+ ... +i,-,, 

and so 

dellH,[i,;..,i,.~,]Aml 

=(r-m-l)i,+(r-m-2)i, 

+ . . . + (O)i,-,-, + . . . +(l-m)i,-,+(-m)i,-, 

Substituting (6) and (8) into (5) and simplifying we obtain 
the desired result. Q.E.D. 

V. DECODING OF CROSS PARITY CHECK CODES 

In this section we will demonstrate how the geometric 
geometric regularity inherent in CPC codes can be used for 
decoding. Specifically, we will present a general erasure 
decoding algorithm for CP(n, k, m) and a double-error 
correcting algorithm for CP(n, n -4,l). Note that Piret 
and Krol [13] gave error-correcting algorithms that can be 
used for all MDS convolutional codes; our contributions 
here are significant in that they show how the geometric 
regularity in CPC codes can be used to fashion simple 
decoding procedures. 

The algorithms in this section are examples of syndrome 
decoding. In the case of CP(n, k, m), the syndrome of a 
received n-tuple are determined by the parities of the bits 
falling on lines of slope l/x, where m  I x I m  - (n - k - 
1). Thus let S(“‘(i, j) be defined as the modulo-two sum 
of the bits lying on the line of slope l/x passing through 
the jth bit on track i. That is, if 

A,= {a,,:O~i~n-1,-c9<j<+c0,ajj~ {O,l}} 

are the tape contents received at the decoder, then 

n-l 
S(“)(i, j) = C a 

/, J-(1-/)X’ 

I=0 
(9) 

We  will show in Section V-A how these syndromes can be 
used to correct n - k erasures. In Section II-B, the syn- 
dromes of CP( n, n - 4,2) will be used to correct two 
errors. 

The minimum such delay is clearly obtained by setting 
ij = j for j = 0; . 1, r-m-l and i,=n-r+ j for j=r 

The underlying concept of these algorithms is simple. In 
each case we will construct a piecewise linear partition . . . r - 1. Plugging these values into our expression 

f~r”dell$[i,: . ., i,~i]Am), we find 
running across the tape, passing through exactly one bit on 
each track; we will show how this line, called a decoding 

del[GCD{lHO[i,;~~,i,~,]A~~:O~i,,< ... sirpI}] boundary, can be constructed to have the following prop- 

=[(r-m)(r-m-l)(r-m-2)/6] erty. If everything on one side of the line is assumed to be 

-[m(m+1)(3n-m-2)/6]. 
correct-that is, exactly as it was written by the 
encoder- then the syndromes can be used to discern what 

Finally, we must find deg[p(D)]. By definition, was written into the locations lying on the boundary. As 
deg [ p(b)] is just the degree of the GCD of the minors of mentioned in Section II, one always assumes that zeros are 
H,, minus the delay of the GCD of the minors of Ho. written at the beginning of a tape, and so we always have a 
Using Fuja’s result for m  = 0, we can show that the GCD “starting place” where the tape contents are known. We  
of the minors of Ho is just IH,[O, 1,. . . , r - 111, and so use this information to make corrections to bits lying on a 

deg[p(D)] =deg(H,[O;~~,r-l]~-del~HO[O;~~, 
boundary and then advance the boundary by one bit. 

’ -111 Continuing in this vein, one can correct all tracks, one 
= [(r -2)(r -1)(2r -3)/3] boundary at a time. 

-[(r-l)‘(r-4)/2]. 
Using (7) we have now shown 

A. Erasure Decoding of CP(n, k, m) 

deg[GCD{ (H,[i,;..,i,_,]Am(:Oli,< ... <irpl}] 
In this section we will show how CP(n, k, m) can be 

used to correct n - k erased tracks. As noted earlier, we 
= [(r-m)(r-m-l)(r-m-2)/6] will use decoding boundaries to achieve our goal; further- 

-[m(m+1)(3n-m-2)/6] more, since we are concerned only with decoding what is 

+[(r-2)(r-1)(2r-3)/3]-[(r-1)2(r-4)/2]. 
on the erased tracks-the unerased tracks being presumed 
correct-the decoding boundary need only be defined on 

(8) those erased tracks. It is easiest to see how this is done by 



first examining a particular example, and then generalizing 
the technique. 

Consider the code CP( n, n - 5,2). This code is defined 

m-1 14x-2 

P-= C j(em-j-e,-gI) ; 
j=I 

p+ = x (r-m-l-jlk r-j- e r-j-1 ) 
j=l 

by five slope constraints; the bits falling on any line of 
slope l/x, - 2 I x I 2, must sum to zero module two. In 
Fig. 3 it is shown how these constraints can be used to 
create a decoding boundary. Assume that tracks e, < e, < 
e2 < e3 < e4 are erased and that all the data to the left of 
the marked bits on the erased tracks are correct. To decode 
the marked bits, we first use the -l/2 and l/2 con- 
straints to correct the emboldened bits on tracks e, and 
e4, respectively. Having corrected those bits, we then use 
the - 1 and + 1 constraints to correct the erased bits on 
tracks e, and e3. Finally, we can then decode the bit lying 
on e2 by computing the vertical parity. If one assumes that 
there were no errors on any of the unerased tracks, then 
the decoder has correctly estimated all of the emboldened 
bits, and the boundary can be moved one bit to the right. 

v 
i=m 

* k=p+ 

I 

i = r-m-l 
k=p- 

p =r-1-mi 
Compute 5’ (e p , j+k) 

Fig. 3. Construction of erasure decoding boundary for CP(n, n - 5,2). 
a ep,l+k c aep,j+k @ S-‘(ep.j+k) 

k c k-(i-l)(ep-ep_t) 

i+i-1 
This technique easily generalizes. One works inward 0 1 

from the edges of the decoding boundary, using the bit just 
decoded to get the next one on the boundary; then the 
vertical parity check determines the final bit. 

The general decoding algorithm is given in flowchart 
form in Fig. 4. In this description we assume that the tape 
has been encoded with CP(n, k, m), and a possibly cor- 
rupted version is read back. The notation used is the one 

Fig. 4. Erasure decoding algorithm for CP( n, k, m) 

given above; a, j is the value of the jth bit on track i, and 
S(“)(i, j) is the’modulo-two sum of the bits falling on the To this end, define for all j 2 0 and for x E { - 2, - 1, l} 

line of slope l/x passing through that bit. Furthermore, the set 

we assume that tracks, e, for i = 0,l; . ., r - l(r = n - k) 
are erased, and e, < ej for i < j. Thus the goal is to 

g(-X)= (j:O<j<n-l,S(X)(i, j)=l}. 

determine the value of a,, j for O<i<r-1 and j>O. Simply put, pJcX) contains the numbers of those tracks that 
(As before, we assume that a,, = 0 for j < 0.) are “flagged” by a slope l/x parity check at time j. Next, 

B. Error Decoding of CP(n, n - 4,l) 
define the following pointers: 

In this section we will show how the four parity tracks 
of CP( n, n - 4,l) can be used to correct any number of bit 

if lPJl)I > 0 p(O) = max P!‘) , 
J 

I 

errors, provided they all occur on only two tracks. Assume 
-1: otherwise 

that a tape is encoded with CP(n, n -4,1) and that a 
possibly corrupted version is read back. As before, let ajj 

p(-1) = 
.I 

i 

min p/‘-l), if JP!-‘)l > 0 
J 

-1 otherwise 
denote the contents of the jth bit on the ith track, and let 
S(“)(i, j) be the modulo-two sum of the bits lying on a pJe2’= min Pl(-‘), if lP!-‘)) > 0 

J 

line of slope l/x passing through that bit, as in (9). The J 
-1, otherwise. 

decoding boundary for this algorithm is a vertical line; 
that is, at the lth step of the algorithm we assume that The significance of these pointers is best seen by exam- 
{a,,: 0 I i I n - 1, j < I} are correct-as written by the ple; in Fig. 5 their values are shown for a variety of error 
encoder- and the algorithm will decode a,, for i = configurations on a ten-track magnetic tape. (A bit error is 
O,l;..,n-1. denoted by a shaded circle.) Heuristically, the pointers 
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PJ’ =8 

p; =pj2=4 

9  

786  5  
34  
1 2 

0 

I 8  
6  

5  
34  
1 2 

0 
j 

Fig. 5. Pointer values for variety of error nonfigurations. 

Compute: 

/ 
s p. PJ! , p;! Pi2 

Complement a p f (j Complement a p-~ j ’ 

j+-j+l 
L-r’ 

indicate which track is the first one “flagged” as the three 
skewed parity check lines slide over the decoding bound- 
ary; if no tracks are flagged, then the pointers are assigned 
the arbitrary value of - 1. Note that if errors line up in a 
certain way, they can be “shielded” from the pointers. In 
the third example in Fig. 5, two bit errors fall on a line of 
slope - 1 and so are hidden from SC-‘)(i, j); similarly, in 
the fourth example the set p/i) is empty because the two 
errors that occur fall on a line of slope one. 

Fig. 6  gives an algorithm that makes use of these point- 
ers to describe a two-error-correcting decoder for 
CP(n, n - 4,l). At each iteration, the decoder first checks 
the value of SJ’O) = S(‘)(i, j). (We use the shorthand nota- 
tion SJ’O) because S(‘)(i, j) obviously does not depend on 
i.) If S(O) = 1, then by our assumption that at most two 
tracks lontain errors, we know that there is exactly one bit 
error in the j th column of the tape. Furthermore, either 
p(l) or p’-” (or possibly both) will point to the corrupted 
bit; it iseasy to verify that p,‘-‘) points to the error if and 
only if p(-l) = pjw2). 

If cd Sj = 0, then there are either no errors in the jth 
column or there are two errors. If there are two errors, 
then both P,(l) and P!-‘) will be nonempty and both 
p(-” and p(-2) will p’oint to the same track. If both of 
these conditions hold, then the two errors will be indicated 
by p!l’ and p ~ ( ‘1; if either condition does not hold, then 
therl are no eirors in the jth column. 

Fig. 6. Double error correcting algorithm for CP( n, n - 4,l). 

VI. SHORTENED CROSS PARITY CHECK CODES 

In this section we will construct new MDS convolutional 
codes from cross parity check codes. Our motivation is to 
reduce the length of the parity check lines defining our 
geometric codes. There are two reasons for this. First, 
there is an inherent decoding delay incurred by long parity 
check lines because the tape drive’s read head must pass 
over the entire length of the line before it can compute the 
associated syndrome. A second problem with very long 
parity check lines is that they increase the length of the 
error-free “window” that must occur between error bursts. 
For instance, the erasure decoding algorithm given in 
Section V-A is capable of correcting up to n - k erased 
tracks; however, an error-free interval is required to change 
the erasure locations, and the longer the parity check lines, 
the longer the window required. 

We  wish to construct parity check matrices that reflect 
short geometric constraints; this suggests keeping the high- 
est power of D in the parity check matrix relatively small. 
To do this, we will use the technique of parity check 
matrix reduction, first introduced by Piret and Krol [13]. 

Definition: For an arbitrary matrix A over F;[ D] and for 
any ~(0) E F[D], define another matrix A[n(o)l whose 
entries are the remainder of the division of the element, in 
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A by a(D); 

A = [a,,(D)] + A’“(D)’ = [--i~)l. 

Definition: For any convolution code C defined in terms 
of a parity check matrix H, and for any a(D) E F[D], 
define C mod r(D) as the code described by the parity 
check matrix H IncD)]. 

In this section we are interested in finding polynomials 
r(L)) such that CP(n, k, m) modulo r( 0) is still MDS. 

Theorem 4: CP(n, k, m) mod m(D) is MDS for any 
irreducible, primitive polynomial r( 0) E I;[01 provided 
deg [n(D)] 2 log,(n +l). 

Proof: The proof of the theorem is based on [13, 
theorem 11; it consists of considering D not as an indeter- 
minate, but instead as a primitive root of r(x). Then each 
element of H, is an element of GF(2deg[n(x)l) = 
F [x]/r( x), and it can be shown that this matrix is totally 
nonsingular. (In fact, it is a parity check matrix for a 
Reed-Solomon code.) Of course the matrix HF(D)1 is 
equal to H,,, over this field, meaning it, too, is totally 
nonsingular. Considering D as an indeterminate again, 
this means that each r x r minor of HF(D)1 is nonzero 
modulo r(D) and so nonzero. Q.E.D. 

Theorem 4 lets us markedly decrease the delay of any 
CPC code. Unfortunately, the technique used to achieve 
this completely destroys the nice geometric properties de- 
scribed in Section II; shortening H,,, with some arbitrary 
primitive irreducible polynomial a(D) “folds” the parity 
check lines in a very irregular way. 

The desire to retain some semblance of the geometric 
properties we used to define the CPC codes leads us to 
consider the codes CP( n, k, m) mod (D J + 1); heuristi- 
cally, the parity check lines for CP(n, k, m) mod (Dj + 1) 
are formed by “breaking” the parity checks for CP( n, k, m) 
and “sliding” them backwards. An example of this proce- 
dure is given in Fig. 7. 

(4 

(b) 
Fig. 7. Example of effect of reducing CPC code by DJ + 1. (a) Parity 

check lines for CP(9,6.0). (b) Parity check lines for CP(9,6,0) mod 
D’+l. 

Theorem 5: CP(n, k, m) modulo Dj+ 1 is MDS for all 

odd jkn. 

Proof: We must show that every r x r subarray of 
HFcD)l is nonzero. It is sufficient, as in Theorem 4, to 
show that every r x r subarray of H, is nonzero modulo 
DJ + 1. However, from the proof of Theorem 1 we know 
that every r x r minor of H, can be written as the 
corresponding minor of Ho times a power of D. Thus each 
r x r minor of H,, is nonzero modulo Dj + 1 if and only if 
each r x r minor of Ho is nonzero modulo Dj + 1. How- 
ever from Theorem 1, the minor obtained by selecting 
columns i,, . . . , i,-, is of the form 

det(H,[i,;..,i,,~,~,]) = n (D’u+ 0’“). 
CZ>h 

Since j is odd, D I+ 1 has a primitive j th root of the unity 
that is not a root of D’u + D’h for all a and b. Therefore, 
the determinant cannot be nonzero modulo Dj + 1 and the 
theorem is proved. Q.E.D. 

VII. FUTURE WORK 

The following unresolved issues concerning cross parity 
check codes warrant further consideration. 

l While a general erasure-correcting algorithm for 
CP(n, k, m) was presented in Section V the “companion 
piece”-a general error correcting algorithm-is yet to be 
found. From the results presented in Section III, we know 
that CP(n, k, m) is capable of correcting any number of 
errors provided they occur on at most [(n - k)/2j different 
tracks. At this point, we have developed algorithms capa- 
ble of achieving this only for n - k I 4. 

l Decoding algorithms that take advantage of the geo- 
metric regularity of the “shortened” codes of Section VI 
have yet to be developed. 
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APPENDIX 

Theorem 3: The matrix G,,,,,Y as defined in Section IV-A is 
realizable for x = r - m. 

Proof: First consider the case m = 0. From the definition of 
the generator and parity check matrices, it is easy to verify that 
G,,,rH,T= 0. If 2 is defined as the k X r matrix consisting of 
G,,,,, with the identity matrix removed, then the above equation 
can be reformulated as 

G,,,rH,T=ZP+Qk,r\krx=O 

where \k, Q,. ,, and P are as given in Section IV-A. From this we 
arrive at (2) from Section IV-A: 

Z = Qk , r?F,“P- ’ . (AlI 
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The goal, then, is to pick x so that every element of Z as 
def ined in (Al) has, after reduction to lowest terms, a  denomina- 
tor with a  nonzero constant term. 

Consider two matrices, A and  B over some field; let the 
dimensions of A be  k X r, and  let those of B be  r X r. The  
elements of the two matrices are given by 

Af;,ili, f I] 

and  

B= 

W e  wish to find a  “nice” form for the matrix product AB- ‘. 
To  this end,  let { y,, } be  the elements of B-l, and  define the r 
polynomials 

r-1 

Y,(Y) = c X/Y’ 
i=O 

1215  

To see how all this relates to (Al), we note that 

rl D‘ D2’ . . D(r-l)x 1  

L 1 D\+/\-l @.\+&I) . D(r-l)(x+h-I) 

and  so Q, ,.?F,.‘P- ’ is a  product of the form described above.  
Therefore,if{z,,:O~i~k-1,O~j~r-1}aretheelementsof 
Z, (Al) can be  reformulated as 

I 

x-1 ~‘4" + D" r-1 D-Y+'+ Dh 

n  n  a=O D’tD” h=w D’+Dh ’ 
if j <  x (A2a) 

u#j 

x-1 D‘+‘+D” r-1 D”+‘+Dh+k 

rI 
u=o D 

rI ‘+‘\ +  D” ,,zx- D ,+h + D/l+” ’ if j 2  x. (A2b) 
h#j 

W e  recall that the goal is to find an  x such that all the zi, are 
realizable. This suggest  factoring (A2): 

I 
j , + I).Y+z-o+l 

D(‘/2)-(1/2)+(r-x)(i+x)-j(r-j) n  - I+ D” 
a=1 

x-l-j 1+ Dx-h+r+l r-1-x l+ Dkp!+c 

0-I 
h=l l+D” rI 

z.. =  
c=. 1+  Dc+k+x-/ ’ if j <  x 

1, 

@r/21 
x-1  1+  DA+‘-” 

--(//2’+(r-l-x)(i+x-k)-j(r-1- j)avo l+D,+~~” 

J-1-X I+ Dh+k-, r-l- 

’ h;. l+DJ-xmh ’ 

J 1+  Dk-G-r+‘ 

c=l l+D” ’ 
if j 2  x. 

(Note: W e  take the convent ion that i 
i 1  

=  0  for u  =  0  or a  =l, and  that rIF,,a, =l for y >  x.) 
The multiple products above contain a  nonzero constant term in the denominator even after reduction to lowest terms. Thus z,, is 

realizable if and  only if e,, >  0, where 

+(r-x)(i+x)-j(r- j), if j <  X 

e  z, =  
X 

HO 2  - i +(r-l-x)(i+x-k)- j(r-l-,j), if J’ 2 X 

In fact, it is easily seen through elementary calculus that if we set 
for j =  0,l; . . , r - 1. Now from the fact that BB-’ = I, we x = r (and thus j <  x for all j), then e,, is nonnegat ive for all i 
conclude that y, (p,) =  &,, the Kronecker delta. This however  and  j. Thus G,,,. is realizable, and  so it is a  valid systematic 
uniquely determines y,(y) to be  generator for CP( n, k, m = 0). 

A similar process leads to construction of a  systematic genera-  
r-1 Y-P, 

Y,(Y) =  I-I __  
tor for CP( n, k, m) for all m, 0  I m I m - k - 1. As shown in 

j;y P, -P, Section IV-A, G,,,, ~  can be  expressed as 

G,,, \ =  D- ‘““Pk-“‘Go ,?P,: 

Taking the product AB-’ just involves evaluating these poly- Using this formulation and  proceeding as before, if we define 
nomials at the different values of (Y,. Specifically, if we let the k X r matrix Z to consist of G,,,., with the identity matrix 
I?,: Osisk-l,O<j<r-l}betheelementsofAB~’,then removed,  and  let { z,,: O<i<k-1, 01  j<r-1) be  the ele- 

ments of that matrix. then 
r-1 a, -p, 

q,= rI 
;;Ij P, -I$’ 
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where h, , (0) = 1 and 

+(r-x)(i+x)-j(r-j)-(x-j+i)m, if ,j < x 

A,= 
if j>X. 

Simple calculations reveal that if x = r - m, then f,, 2 0 for all i 
and j, and so G ,,,, ~~ ,,, is realizable. This proves Theorem 2. 

Q.E.D. 
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