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Binary Convolutional Codes with 
Application to Magnetic Recording 

A. R. CALDERBANK, CHRIS HEEGARD AND TING-ANN LEE 

Abstract-Calderbank, Heegard, and Ozarow [l] have suggested a 
method of designing codes for channels with intersymbol interference, 
such as the magnetic recording channel. These codes are designed to 
exploit intersymhol interference. The standard method is to minimize 
intersymbol interference by constraining the input to the channel using 
run-length limited sequences. Calderbank, Heegard, and Ozarow consid- 
ered an idealized model of an intersymbol interference channel that leads 
to the problem of designing codes for a partial response channel with 
transfer function (1 - DN) / 2, where the channel inputs are constrained 
to be * 1. This problem is considered here. Channel inputs are generated 
using a nontrivial coset of a binary convolutional code. The coset is chosen 
to limit the zero-run length of the output of the channel and so maintain 
clock synchronization. The minimum squared Euclidean distance between 
outputs corresponding to distinct inputs is bounded below by the free 
distance of a second convolutional code which we call the magnitude code. 
An interesting feature of the analysis is that magnitude codes that are 
catastrophic may perform better than those that are noncatastrophic. 

I. INTRODUCTION 

A CODING TECHNIQUE suitable for high-density 
magnetic recording has been described by Calder- 

bank, Heegard and Ozarow in [l]. Simple recording codes 
are presented that allow an increase in recording density 
and that decrease the probability of error when the infor- 
mation stored on the disk or tape is retrieved. The codes 
are designed to exploit intersymbol interference in the mag- 
netic recording channel. Decoding is accomplished by 
maximum likelihood sequence estimation which is imple- 
mented using the Viterbi algorithm. 

Modulation codes designed under the assumption of a 
peak detector use run-length limited sequences to guaran- 
tee a minimum (and maximum) separation between the 
peaks of the read signal (the maximum separation is 
provided for clock synchronization). These modulation 
codes seek to minimize intersymbol interference by con- 
straining the input to the channel. The recent papers by 
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Adler, Coppersmith, and Hassner [2] and by Schouhamer 
Immink [3], 141, [5] offer two rather different approaches to 
the design of this type of modulation code. 

The model of the intersymbol interference channel 
studied by Calderbank, Heegard, and Ozarow has three 
significant attributes. 

1) The writing current in the recording head is suffi- 
cient to ensure positive or negative saturation of the 
magnetic medium. Thus it is only possible to write 
the symbols + 1. 

2) The recording process differentiates and low-pass 
filters the input waveform. Differentiation occurs 
because we assume that the read head detects 
changes in the pattern of magnetization. 

3) The filtered waveform is corrupted by additive noise. 

The approach applies (in principle) to any finite duration 
step response but the authors focus on two idealized step 
responses. One of these is a true moving average or 
“square” response p(t) = B,(t), where 

4-(t) = ( 
1, if -T/2<t< T/2 
0, otherwise 

The authors argue that at symbol rate N (the write signal 
x(t) = CTEOajBT(t -jT) where T = l/N and aj = +l) 
the probability of decoder error behaves as Q(/w), 
where 

is the tail of the unit Gaussian distribution, A is the 
system gain, and 

d2 = D$;* f(1 - O ”)(x - x*) Ijl, 
/I 

where the minimum is taken over all pairs of distinct 
codewords (channel inputs) corresponding to messages 
that agree in all but a finite number of places. This 
motivates the design of simple trellis codes for channels 
with transfer functions (1 - Pv)/2 where channel inputs 
are constrained to be -t 1. 

For N > 3 this model is not applicable to the magnetic 
recording channel. For N = 1, 2 it coincides with models 
that have been studied previously in the magnetic record- 
ing literature (see Kobayashi and Tang [6], Nakagawa, 
Yokoyama, and Katayama [7], Wood, Ahlgrim, 
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Hallamasek, and Stenerson [S]). But in any case the prob- 
lem of code design is of interest in its own right. 

The encoders that we consider here transform a binary 
message into a codeword using a binary convolutional 
code. We design codes that increase the minimum squared 
Euclidean distance d2 between outputs corresponding to 
distinct inputs. We generate the channel inputs using a 
non-trivial coset of the convolutional code. This eliminates 
long sequences of zeros as possible channel outputs and so 
maintains clock synchronization. The most interesting 
aspect of the analysis is perhaps that encoders leading to 
“catastrophic” binary convolutional codes perform better 
than encoders leading to noncatastrophic codes on the 
(1 - DN)/2 channel. We advise the reader to begin with 
the examples presented in Section II since they illuminate 
the theory presented in the rest of the paper. Section III 
formalizes the problem of code design within an ap- 
propriate algebraic framework. Section IV discusses meth- 
ods of code construction. The problem of clock synchroni- 
zation is solved in Section V. Theorems covering the 
overall performance of rate k/(k + 1) codes on the (1 - 
D)/2 and (1 - D2)/2 charmel are presented in Section 
VI. Section VII is a list of recording codes and their 
parameters. 

II. SOME SIMPLE RECORDING CODES 

In this section we present simple trellis codes for partial 
response channels with transfer functions (1 - DN)/2 
where the channel inputs are constrained to be +l. 
Calderbank, Heegard, and Ozarow introduced this type of 
trellis code in [l]. The encoder transforms a binary 
message into a codeword (sequence of channel inputs) 
using a binary convolutional code. The minimum squared 
Euclidean distance between outputs corresponding to dis- 
tinct inputs determines the probability of decoder error. 
This distance is bounded below by the free distance of a 
second binary convolutional code. The transfer function of 
the partial response channel determines the relationship 
between these two convolutional codes. 

The idea of lower bounding the Euclidean distance of a 
trellis code by the Hamming distance of a convolutional 
code is described by Ungerboeck [9] and by Calderbank 
and Mazo [lo]. It is also used by Wolf and Ungerboeck in 
[ll]. . 

A second purpose served by the trellis code is to provide 
clock synchronization. If long sequences of zeros are possi- 
ble charmel outputs then the decoder will have difficulty 
maintaining synchronization. Lee and Heegard [12] dem- 
onstrate that it is possible to limit the zero-run length of 
the output by adding a fixed periodic binary sequence to 
each codeword. 

Example I: This is the simplest possible example; a rate 
l/2 code for the (1 - D2)/2 channel requiring a two-state 
decoder. The repetition code [l, l] is used to generate 
channel inputs. The encoder receives a message m = 
Cm,, ml, m2, - * * 1, m, = f 1, and transmits a codeword 
x = (x0, Xl, x2, * * * ), xi = f 1. At time k the encoder 

generates code bits xlk, x2k+l by the rule 
X 2k = x 2kil = mk* 

(The correspondence between the 0,l world and the + 1 
world is quite straightforward; modulo 2 addition in the 
0,l world corresponds to multiplication in the + 1 world.) 
The decoder reconstructs the message m by comparing the 
corrupted channel output with estimates of the sequence 
s = (1 - D2)x/2, where 

S2k = S2k+l = icrnk - mk-l>e 

The decoder requires two states. Let w # m be a message, 
let x * be the codeword corresponding to w and let s * = 
(1 - D2)x */2. If exactly one of the pairs ( wk, mk), 
(wkpl, m&i) are not identical then 

b2k - @ki = bZk+l - ‘6k+li = l* 

d2= min 
xzx* 

then d 2 is bounded below by the free distance of the rate 
l/2 binary convolutional code with generator matrix [l + 
D, 1 + D]. Fig. 1 is the state diagram of this code. The 
labels on the two states correspond to the possible values 
of the prior message bit. An edge represents a transition 
between states and is labelled with the Hamming weight of 
the corresponding output. The relationship between the 
convolutional code used to encode messages and the con- 
volutional code used to determine the performance of the 
decoder is given by 

(1 :D, I 
=[l+D l+D]. 

The matrix (1 + D)I is called the channel matrix. It 
represents the operation of adding (modulo 2) a sequence 
of 2-bit bytes to a 2-bit shift (N = 2) of itself. 

We introduce the symbol = to mean “agrees in all but 
a finite number of places.” Consider two codewords X, x’ 
corresponding to messages m, m’ respectively. If x ;t: x’ 
and (1 - D2)x/2 = (1 - D2)x’/2 then the decoder will 
be unable to distinguish x and x’. Write mj = (- l)fim( 
where uj = 0 or 1. Then 

;(l - D2)x = i(l - D2)x’ (mod2) 

oy[l + D,l + D] = [O,O], 

ii 
1 

2 2 

4. 0 

0 
Fig. 1. State diagram of binary convolutional code with generator 

matrix[l + D,l + D]. 
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andsoy=l/(l+D)=(l,l,l;.*),m’= -m,andx’ 
= -x. If (1 - D2)x/2 = (1 - D2)(-x)/2 then (1 - 
D2)x = 0 and mk = mkwl for all but finitely many k. The 
only pair of messages that the decoder cannot distinguish 
are *(l,l;..). 

A second problem with the constant message is that the 
decoder clock requires transitions in the output sequence s 
to maintain synchronization, and a constant message se- 
quence produces the zero output sequence. Again this 
problem is associated only with constant message se- 
quences. 

The remedy is very simple; define 

Then 
X 2k = (-l)kmk, X2k+l = mk- 

( -Ok s 2k - - ~ mk + mk-l)p S2k+l = 2 ( ;crnk - mk-l>e 

The Euclidean distance d2 is still bounded below by the 
free distance of the code [l + D, 1 + D], which is 4. How- 
ever there is no message m for which (1 - D2)x/2 2: 
(1 - D2)( - x)/2; indeed the maximum zero-run length of 
an output sequence is just 2. 

Example 2: In Example 1 we designed a rate l/2 code 
for the (1 - D2)/2 channel. It is of course possible to 
regard the (1 - D2)/2 channel as two interleaved (1 - 
D)/2 channels and to design a rate l/2 code for the 
(1 - D)/2 channel. This example is designed to illustrate 
the limitations of this approach. 

The code [l + D + D2, l] is used to generate channel 
inputs and we refer to this code as the sign code (following 
the terminology introduced by Lee and Heegard [9]). The 
encoder receives message bits mk = f 1, and at time k, 
generates code bits xZk, x2k+l by the rule 

X 2k = mkmk-lmk-2, X2k+l = mk* 

The output sequence s = (1 - D)x/2 is given by 

S l( 2k = 5 mkmk-lmk-2 - mk-lh 

S2k+l = i(m, - mkmk-lmk-2). 

The decoder requires 4 states. Let w # m be a message, let 
x* be the codeword corresponding to w, and let s * = 
(1 - D2)x*/2. If an odd number of the pairs (mk, wk), 
(mke2, wke2) are different, then ]sZk - s?~] = 1. If an odd 
number of the pairs (m&i, wk-i), (mk-2, wk-2) are dif- 
ferent, then ]s2k+l - s;~+~] = 1. Thus 

d2= min 
X+X* (II;0 - D>b - x*)ii’] 

is bounded below by the free distance of a binary convolu- 
tional code with generator matrix [l + D2, D + D2]. Fig. 
2 is the state diagram of this code. Again we adopt the 
terminology introduced by Lee and Heegard [12], and we 
refer to the code [l + D2, D + D2] as the magnitude code. 
The magnitude code is obtained by multiplying the sign 
code by the channel matrix which represents the operation 

10 

Fig. 2. State diagram of binary convolutional code with generator 
matrk[l + D', D + D'j. 

of adding (module 2) a sequence of 2-bit bytes to a l-bit 
shift of itself: 

[l + D + D2, I][; ;] = [l + D2, D + D2]. 

The magnitude code results from using the sign code to 
generate inputs to a modulo 2 (0,l) channel with transfer 
function 1 + D. 

Again we need to identify all pairs of codewords x, x’ 
such that x %  x’ and (1 - D)x/2 = (1 - D)x’/2. Sup- 
pose x, x’ correspond to messages m, m' and write ml = 
( - 1) brn j where yi = 0 or 1. Then 

;(l - 0)x = i(l - 0)x’ (mod2) 

*y[l + D2, D + D2] = [O,O]. 

Hence y = l/(1 + D), m’ = -m, and x’ = -x (since 
each product occurring in the formulas for xZk+j, j = 0, 1, 
involves an odd number of terms ml). Now (1 - D)x/2 
= 0 forces m = +(l, 1, 1, . . . ). The only pair of messages 
that the decoder fails to distinguish is +(l, 1, 1, . . . ). (This 
is not happenstance. We shah consider codewords x, x’ 
generated by a rate k/n sign code for the 1 - D channel 
such that x * x’ and (1 - D)x/2 = (1 - D)x’/2. We 
prove that x’ = -x and that after applying some nonsin- 
gular transformation to the inputs we may suppose m'j = 
-mj for some j E {O,l; .., k - l} and rnli = m' for 
i # j.) 

Again the remedy is very simple; define 
X 2k = -mkmk-lmk-2y X2k+l = mk- 

Then 

mkmk-lmk-2 + mk-l) 

‘2k+l = i(mk + mkmkvlmk-2). 

The free distance of the new code is still 4. However it is 
easily checked that there is no message m for which 
(1 - D)x/2 = (1 - D)(-x)/2; indeed the maximum 
zero-run length in an output sequence is 4. 
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Examples 1 and 2 feature rate l/2 codes with squared 
Euclidean distance d2 = 4 that can both be used on the 
(1 - D2)/2 channel. Example 1 requires a 2-state decoder 
operating on a time-varying trellis with period 2 (the 
expression s2k = (- l)k(m, + mkPI) involves (- l)k). Ex- 
ample 2 requires two 4-state decoders working in parallel 
on the same stationary trellis. The maximum zero-run 
length in Example 2 is 4 whereas in Example 1 it is 2. 

Example 3: A rate 2/3 code for the (1 - D)/2 channel. 
This example is designed to introduce the reader to rate 
k/n sign codes, where k # 1, and to demonstrate the 
method of calculating the maximum zero-run length. 

The generator matrix for the sign code is 

G= [; y A ]. 
The encoder receives messages m’ = (mb, rn:, * . * ), rni = 
f 1, i = O,l, and transmits a codeword x = (x0, x1, * . * ). 
At time k the encoder receives message bits rni, rn\ and 
generates code bits xjk, x~~+~, x3k+2 according to the rule 

X 3k = mi, X3k+l = mok-lm1k7 X3k+2 = mim:-l. 

The output sequence s = (1 - D)x/2 is given by 

s3k = i(rnE - m~-Im:-2), 

S3k+l = 

I( S3k+2 = 2 mimivl - mi-lmk ‘>* 

The decoder requires 8 states. Let wi, i = 0, 1, be messages, 
let x * be the corresponding codeword, and let s * = (1 - 
D)w*/2. If an odd number of the pairs (mt, WE), 
(rni-,, wiwl), (miv2, wim2) are different, then lsjk - s&l 
= 1. If an odd number of the pairs (mEPI, WE-~), 
(ml,, wi), (mO,, w”,) are different, then lsgk+i - s&+il = 1. 
If an odd number of the pairs (mi, wi), (mi-l, w;-~), 
(rni-,, wg-& (m:, w:> are different, then hk+2 - s3*k+2l 
= 1. Thus 

d2= m in 
X#X* { ll;Q - wx - 4 II’] 

is bounded below by the free distance of the binary 
convolutional code with generator matrix 

F= 1-I-D 
[ 

l+D 1-I-D 
D2 1 I li-D. 

This is the magnitude code and it is obtained by multiply- 
ing the sign code by the channel matrix which represents 
the operation of adding a sequence of 3-bit bytes to a l-bit 
shift of itself: 

The magnitude code results from using the sign code to 
generate inputs to a modulo 2 channel with transfer func- 
tion 1 + D. The magnitude code is catastrophic; the great- 

est common divisor of the determinants of the 2 X 2 
m inors of F ,is 1 + D. 

We identify all pairs of codewords x, x’ such that 
x ;t: x’ and (1 - D)x/2 = (1 - D)x’/2. The only non- 
zero solution [ y’, y’] to 

l+D l+D l+D 
1 + D = [o,o,ol 

I 

is y* = (1, 1, 1, * . . ), y1 = 0. Therefore the codewords 
x, x’ correspond to messages [m’, m’] and [-m’, ml] 
respectively. Since each product occurring in the formulas 
for x 3k+j, j = 0, 1,2, involves an odd number of terms my, 
we have x’ = -x. We still have to identify all messages 
m’, m1 for which (1 - D)x/2 = 0. We do this by writing 
m i = ( -l)yt, where y; = 0 Or 1. Setting sgk = sgk+i = 
s 3k+2 = 0 for all k, we observe that again we are looking 
for a solution to the equation 

[ Y’, Y’] I: = [V-40], 
The possible solutions are 

y” = y1 = 0; m” = ml = (l,l, 1, * * * ), 

Y O = 1, y’ = 0; m” = (-1, -1, .*.),ml= (l,l, *a+). 
There are only 2 message pairs that the decoder fails to 
separate. 

If we modify the encoding rules by taking 

x3k = m:, xjk+l = m~-lm~y xjk+z = -m$~-l, 

then 

S ? 3k = 2 rni + m~-1m~-2), 

s3k+l = 2(mp-lm~- m!), 

s 3k+2 = - mEmi-l + r$-,m:). 

Again write rni = (-l)J’i, wh ere y: = 0 or 1. Observe that 
the codeword x corresponding to messages mO, rn’ satis- 
fies (1 - D)x/2 = (O,O, . . . ) if and only if the sequences 
y” = y’(D), y1 = y’(D) satisfy 

[Y’(D), Y’(D)]F= [&A j&j]- 

We have to show that there is no codeword in the magni- 
tude code that agrees with (LO, l)/(l + D) in all but a 
finite number of places. A syndrome former for F with 
m inimal memory is the 1 X 3 matrix 

&[F,, I;;, F3] = [DJ + D + D2,1 + D2], 

where Fi is the 2 X 2 m inor obtained from F by suppress- 
ing column i. Since the inner product 

&(l,O,l)(D,l + D + D2,1 + D2)T= ’ :D++DD2 
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is not a polynomial, there is indeed no codeword in the 
magnitude code that agrees with (l,O, l)/(l + D) in all 
but a finite number of places. To find the maximum 
zero-run length we use the coefficients of the polynomial 
entries of the syndrome former to create an array as shown 
below 

u=(o 1 1 1 1 0 0 1 1) 
D2 1=1+D2 

D2 D 1 =1+D+D2 
D =D 

A vector c = (cl, c2,. . ., cg) can be extended to a code- 
word in the magnitude code if and only if cvT = 0. Now 

w = *11]101]101]100]* 
9 

is a codeword in the magnitude code that agrees with 
(l,O, l)/(l + D) in nine positions. This is the maximum 
possible. 

Example 4: A rate l/2 code for the (1 - D2)/2 chan- 
nel. This example demonstrates that it is not always possi- 
ble to eliminate all bad message pairs by modifying the 
encoding rules. 

The generator matrix for the sign code is 

G  = [l + D + D2,1 + D2]. 

At time k, the encoder receives the message bit mk = &- 1 
and generates code bits x2k, xZk+i according to the rule 

X2k = mkmk-lmk-2, X2k+l = mkmk-2. 

The output sequence s = (1 - D2)x/2 is given by 

s mkmk-lmk-2 - mk-lmk-2mk-3 12 

7 S2k+l = 2 mkmk-2 - mk-lmk-3 )* 

The generator matrix of the magnitude code is 

F = [l + D3,1 + D + D2 + D3] 

and the free distance of this code is 6. The state diagram of 
this code is shown below in Fig. 3. 

We identify all pairs of codewords x, x’ such that 
x %  x’ and (1 - D2)x/2 = (1 - D2)x’/2. The method 
used in Examples 1, 2, and 3 shows that x, x’ correspond 
to messages m, -m, and that xsj = -xzj, x;j+l = x,~+~ 
for all but finitely many j. Next we find all messages m for 
which [(l - D2)x/2]2j = 0 for all but finitelymany j. 

The only constraint on the message m is that s2k = 0 
for all but finitely many k. Hence mk = mke3 for all but 
finitely many k and there are four bad pairs of messages 
+m. 

It is not possible to eliminate the bad message pairs by 
changing the encoding rules as in Examples 1, 2, and 3. 
Suppose we change the encoding rule to 

X2k = e2kmkmk-lmk-2T X2k+l = e2k+lmkmk-27 

where e, = +l. Then messages m for which (1 - D)x/2 
= (1 - D)( -x)/2 satisfy 

mk = e2ke2k-2mk-3 

0 
n 

001 

801 

Fig. 3. State diagram of the rate l/2 binary convolutional code with 
generator matrix [l + D3, 1 + D + 0' + D3]. 

for all but finitely many k. Changing the encoding rule in 
this way changes the description of the bad message pairs 
but it does not change the number of bad pairs. However, 
the bad message pairs can be avoided by constraining the 
input to the encoder. The loss in data rate can be made 
arbitrarily small. 

It remains to remove long sequences of zeros as possible 
channel outputs. We modify the encoding rules as follows: 

X 2k = mkmk-lmk-2, X2k+l = (-l)kmkmk-2. 

Thus 

s 7 2k = y mkmk-lmk-2 - mk-lmk-2mk-3h 

(-ljk 
‘2kil =- 

2 ( mkmk-2 + mk-lmk-3). 

As in Example 3, we write mk = ( - l)J’k, where yk = 0 or 
1. The codeword x determined by m satisfies (1 - D)x/2 
= (O,O, . * . ) if and only if the sequence y = y(D) satisfies 

[Y(D)][~+D~,~+D+D~+D~]= o,&. [ 1 
We must show that there is no codeword in the magnitude 
code that agrees with [O,l]/(l + D) in all but finitely 
many places. A syndrome former for F with minimal 
memory is 

&[l+D+D2+D3,1+D3] 

Since the inner product 
= [l + D2,1‘+ D + D2]. 

&-[O,l][l + D2,1 + D + D2]== ’ :D++nD2 
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is not a polynomial, this modification of the encoding rule 
serves to remove arbitrarily long sequences of zeros as 
channel outputs. To find the maximum zero-run length we 
write down a binary vector o from the coefficients of the 
polynomial entries of the syndrome former: 

u=(l 1 0 1 1 1) 
D2 1 =1+D2 . 

D2 D 1 =1+D+D2 

A vector c = (ci, c2;. ., ca) can be extended (in both 
directions) to a codeword in the magnitude code if and 
only if cvT = 0. There is a codeword 

w = *]l~]ol]ol]op]* 

6 
in the magnitude code that agrees with (O,l)/(l + D) in 
six positions. This is the maximum possible. 

Example 5: A rate l/2 code for the (1 - D)/2 channel. 
The performance of the recording codes described in Ex- 
amples 1, 2, 3, and 4 is determined by the m inimum 
squared Euclidean distance between outputs correspond- 
ing to distinct inputs. The free distance of the magnitude 
code is a lower bound on this Euclidean distance. The next 
example is a very simple and widely used recording code 
(biphase) that demonstrates that the lower bound is not 
always met with equality. 

The generator matrix for the sign code is G  = [l, 11. At 
time k the encoder receives the message bit mk = f 1 and 
generates code bits xZk, xZk+i according to the rule 

X 2k = -mk9 X2k+l = mk. 

The output sequence s = (1 - D)x/2 is given by 

mk + mk-l)p S2k+l = mk. 

The generator matrix of the magnitude code is F = [l + 
D, 0] and the free distance of this code is 2. The m inimum 
Euclidean distance d2 = 6; if m = rnj are messages with 
mk # rn; then ]&+i - sik+i12 = 4, ]szi - s&l2 = 1 for 
some i < k, and ]s2j - sij12 = 1 for some j > k. The 
maximum zero-run length is 1. 

III. ANALGEBRAICMODEL 

In Section 2 we described five recording codes for 
partial response channels with transfer functions (1 - 
DN)/2 and we analyzed the performance of these codes. 
In this section we formalize the problem of code design 
within an appropriate algebraic framework. 

The sign code is a rate k/n binary (IF,) convolutional 
code with generator matrix G  = [gij(D)], where 

gij( D) = gijO + giilD + . . . +gij+jjD’(ii) 

and gijk = 0 or 1. A coset of this code generates the 
channel inputs. We fix n binary sequences ai, i = 

n - 1. Then k binary (IF,) messages y’ = 
+ . . ) determine n output sequences z’, i = 

0,l; * *, n - 1, according to the rule 

The + 1 valued channel input x is given by 

xj,+t = (-1)‘:. 
It is important to choose a sign code that is non- 

catastrophic. Otherwise, for every set of inputs y’, there is 
a second set of inputs j’, and corresponding output se- 
quences ii, for which 

i z zz^’ i = O,l;*., n - 1. 
If the channel inputs agree in all but finitely many posi- 
tions then there is no hope of distinguishing the channel 
outputs. Example 4 in Section II is a rate l/2 code for the 
(1 - D2)/2 channel. There are input sequences y for 
which there exists an input sequence j, and corresponding 
output 2, with z = z^. However as M  + cc the fraction of 
input sequences of length M  with this property tends to 
zero. If the sign code is catastrophic then this fraction is 
always 1. 

The next lemma plays a role in the method of identify- 
ing all codewords X, X’ for which x ;t x’ and (1 - 
DN)x/2 = (1 - DN)x’/2. 

Lemma I: Let G  be the generator matrix of a rate k/n 
sign code. Let m’, wi, i = 0,l; . ., k - 1 be kl valued 
message sequences, let x, x’ be the corresponding f 1 
valued channel inputs, and let 

m j = (- l)yjwi i = 0,l; . ., k - 1. 

where JJJ = 0 or 1. If 

[ y”; * -, yk-‘]G = [zo,. . . , Zn-l], 
then for ah j 

x,,+,=(-l)“:x;,c, t=0,1;**,n-1, 

and this property is independent of the coset of the sign 
code used to generate the channel inputs. 

Example: In Example 3, we showed that codewords 
x, x’ for which x * x’, and (1 - D)x/2 = (1 - D)x’/2 
(mod 2) correspond to messages [m’, ml] and [-m”, m’]. 
Applying Lemma 1 with y” = l/(1 + D), y1 = 0, 

we see that x’ = -x, and so (1 - D)x/2 = 0. 
The magnitude code is the rate k/n convolutional code 

that results from using the sign code to generate inputs to 
an IF, channel with transfer function 1 + DN. Let 6 be the 
n X n matrix 

S= (1) 

If F is the generator matrix of the magnitude code then 
F = G( I + aN). The matrix I + SN is called the channel 
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matrix and it represents the operation of adding a se- 
quence of n-bit bytes to an N-bit shift of itself (see Section 
II for examples). The next lemma is used to identify all 
codewords X, x’ such that x %  x’ and (1 - DN)x/2 = (1 
- DN)x’/2 (mod 2). 

Lemma 2: Let F be the generator matrix of a rate k/n 
magnitude code. Let m', wi, i = 0,l; . ., k - 1 be &l val- 
ued message sequences, let x, x’ be the corresponding -t 1 
valued channel inputs, and let 

mi = (-l)‘Jwf i = 0,l; . . , k - 1, 

where J$ = 0 or 1. If 

[.v”r , yk-‘1 F = [z’; . ., zn-‘1, 

then for all j, 

if(1 - DN)(x - x’)jn+r12 

i 
1, if zj = 1 

= 
Oor4, ifzj=O f=O,l;..,n- 1. 

This property is independent of the coset of the sign code 
used to generate the channel inputs. 

Example: The rate l/2 magnitude code F = [l + D2 + 
D3 + D4, 1 + D + D2 + D4] results from using the sign 
code G  = [l + D + D3,1 + D2 + D3] to generate inputs 
to an IF, channel with transfer function 1 + D2. The 
equation 

r 11 

I I i+ F= [WI 
says that the outputs of the (1 - D2)/2 channel corre- 
sponding to f 1 valued inputs m, - m, agree modulo 2 in 
all but finitely many places. 

The minimum squared Euclidean distance 

d2 = %I$$ (il;(l - D”)(x - x*)11’) 

of the recording code is bounded below by the free dis- 
tance of the magnitude code. Example 5 in Section II 
shows that this lower bound is not always tight. 

The probability of decoder error is determined by the 
minimum squared Euclidean distance d 2. The problem of 
code design is to maximize d 2 while keeping the number 
of decoder states as small as possible. A ‘procedure for 
constructing codes is described in Section IV. 

The examples described in Section II show that two 
further problems can occur. The first problem occurs when 
the magnitude code is catastrophic. We must then identify 
pairs of k 1 valued messages mi, m", i = 0, 1, * * a, k - 1, 
such that mi * m'j for some j, and such that the corre- 
sponding codewords x, x’ satisfy (1 - DN)x/2 = (1 - 
DN)x’/2. We shall say that an output sequence (1 - 
D N)~/2 with the above property is flawed. A code is 
flawed if there exist flawed output sequences and a code is 
catastrophic if every output sequence is flawed. The exam- 
ples described in Section II show that it is sometimes 
possible to eliminate flaws by generating channel inputs 
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using an appropriate coset of the sign code. The identifica- 
tion of all flawed output sequences is carried out using 
Lemmas 1 and 2. First we use Lemma 2 to find all pairs of 
messages m', m'i such that m’j ;t: mj for some j, and such 
that the corresponding codewords x, x’ satisfy (1 - 
DN)x/2 = (1 - DN)x’/2 (mod2). Then we apply Lemma 
1 to identify the flawed output sequences. 

The second problem is to eliminate long sequences of 
zeros at the output by generating channel inputs using an 
appropriate coset of the sign code. It is necessary to choose 
a nontrivial coset. O therwise the channel output corre- 
sponding to message m' = (l,l, 1, . . . ) is zero in all but 
finitely many positions. In Section V we solve the problem 
of zero-run length limiting the output sequence. 

IV. CODECONSTRUCTION 

This section discusses methods of constructing recording 
codes with large squared Euclidean distance d2. (Of course 
the most reliable method is exhaustive search of the class 
of noncatastrophic sign codes.) The papers by Fomey 
114,151 on the algebraic structure of convolutional codes 
are important and useful references. 

The construction procedure is as follows (write n = 
sb, N = SC, where gcd(b, c) = 1). 

Step 1) Choose a k X n generator matrix Go for a 
binary convolutional code with a feedback-free 
delay-free inverse G ;‘. (The entries of Go, Go1 
are polynomials and GoGil = I,$ Go is a basic 
encoder.) 

Step 2) Form M = G,(I + 8” + 62Sc + 4 . ’ + 
Ssc(b-l)), and obtain the invariant factor de- 
composition (or Smith normal form) of M (see 
[14] for an algorithm). We write M = 
A diag[y,; . ., yk]M* where y1]y2J . . * Jyk are 
the invariant factors of M, the k X k matrix A 
is unimodular (polynomial entries and determi- 
nant l), and M* is a k x n matrix with a 
feedback-free delay-free polynomial inverse. 

Step 3) 

The invariant factors yr, * . *, yk are unique 
since y, = hi/hi-i, where hi is the greatest 
common divisor of the i X i minors of M. The 
matrices A and M * are not in general unique. 
Choose a k x k unimodular matrix B (poly- 
nomial entries and determinant 1) which 
minimizes the constraint length of the code 
generated by BM*(I + PC) (see [15] for an 
algorithm). Then set 

G  = BM* and F = G(I + 8”). 

Observe that the polynomial matrix G  has a 
feedback-free delay-free polynomial inverse 
and that 
P= Bdiag[l/y,;..,l/y,]A-’ 

-G,(I + 8” + a-. +iwb-I))( I + a,=> 

= (1 + Dc)Bdiag[l/y,,...,l/y,]A-lGo 
= RG,. 
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The entries of the matrix R = FGil are poly- and 
nomials. 

Theorem 3: The free distance of F is at least the free 
distance of the original convolutional code Go. 

F=G[i ; i]=[l+o”,, l+Do2 ‘;“I- 

Proof: Let y(D) be a polynomial input that m ini- Here the magnitude code F is the original convolutional 

m izes the weight of y(D)F. Since y(D)F = (y(D)R)G,, code. There are no flawed output sequences because 

and since y(D) R is a polynomial input, this weight is Lemma’ 2 implies that there are no pairs of codewords 

bounded below by the free distance of Go. ’ with x*x and (1 - D)x/2 = (1 - D)x’/2 

The codes constructed by this procedure are not 
catastrophic but they may be flawed as the examples below 
illustrate. 

Example 6: Here N = 2, n = 2, k = 1, s = 2, b = 1, c 
= 1. The convolutional code Go = [l + D + D3, 1 + D 2 
+ D3] has free distance 6 and constraint length 3. Now 
I + 6”” + ’ * * + asc(b-1) = I so M  = M* = G = Go and 
F = [l + D2 + D3 + D4,1 + D + D2 + D4]. The free 
distance of the magnitude code F is 8 and the constraint 
length is 4. 

Next we find all flawed output sequences. Consider 
codewords x, x’, corresponding to messages m, m’, such 
that x %  x’ and (1 - D2)x/2 = (1 - D2)x’/2. Write mj 
= ( - l)hmj, where yj = 0 or 1. Then by Lemma 2 

;(l - D2)x 5: f(1 - D2)x’ (mod2),= yF = [O,O]. 

thus y = l/(1 + D), and Lemma 1 implies 4, = -x. The 
only flawed output sequence is the ah-zero sequence. 

Example 7: Here N = 2, n = 3, k = 2, s = 1, b = 3, c 
= 2. The convolutional code 

Go = 
D D l+D 

1+D+D2 1+D2 D I 
has free distance 4 and constraint length 3. We have 

Example 8: Here N = 1, n = 4, k = 3, s = 1, b = 4, c 
= 1. The convolutional code 

1 

Go= [ l+D 

1 1 1 

D 0 0 D l+D 1 1 l-+-D 
has free distance 3 and constraint length 2. We have 

11 1 1 11 
I + pc + s2sc + 63SC = D 1 1 1 

I DDll’ 
ID D D 11 

M  = Go(I + PC + Szsc + a3=) 

l+D 0 
l+D 0. 1 ti l+Di-D2 D 

The invariant factors of the matrix 
0 1 1 
1 1 + D 1 + D G,(I + 6”’ + a2= + S3sc) 
D D l+D I 

D2 D 
l+D 1+D+D2+D3 D+D” 

1 + D3 D + D2 1 
1 
D , 
1 1 

M=Go(I+S"c+62"c)= 0 1 + D2 1 1+D+D2+D3 1+D+D2+D3. 

The invariant factors of the matrix 

G,(I+6”“+62”‘)= l+D+D2+D3 1+D+D2+D3 
D + D2 + D3 + D4 1 + D + D3 + D4 I 

arey,=y2=1+D2sothat 
1 Me=- ’ [ 1 ’ G,(I + 6”” + tS2”) 

are y1 = 1, y2 = 1 + D, y3 = 1 + D, so that 

1+D2 1 D 

Let 

1-I-D l+D 1 D+D2 1+D+D2’ 

B= D ’ [ 1 1 0’ 

M* = diag [l, l/(1 + D), l/(1 + D)] 

D2 D 
l+D 1+D+D2+D3 JI+D2 

1 + D3 D + D2 

Then D2 D 

l+“D ,:,I, 
1+D2 D- 

0 l+D+D’ D 1 
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Choose 

B=[i i t.1. 

Then 
10 1 0 

0 1 D 0 D 1+4 0. 1 D 

and 

The free distance of the magnitude code is 4 and the 
constraint length is 3. 

Again we find all flawed output sequences. Consider 
codewords x, x’, corresponding to messages m’, m”, i = 
O ,l, 2, such that x ” x’ and (1 - D)x/2 = (1 - D)x’/2. 
Write rni = (- l)Y;m;‘, where y/ = 0 or 1. Then by 
Lemma 2 

i(l - 0)x = f(y - D)x’(mocj2) 

- [ y", y', Y’] F = [O, O ,& 01, 
and so y” = l/(1 + D), y’ = 0, and y2 = l/(1 + D). 
Now Lemma 1 implies x’ = -x and so the only flawed 
output sequence is the all-zero sequence. 

Let us briefly consider an alternative construction 
method. Write n = sb, N = SC, where gcd(b, c) = 1. Sup- 
pose we know that F generates a rate k/n convolutional 
code with free distance d. If there exists a matrix G  for 
which 

G(I + 8=) = F, 

then F is the magnitude code corresponding to the sign 
code G . Since 

(I + 6”“)(I + 8”’ + -:a +6sc(b-1)) = (1 + D=)I, 

we can always solve the equation 
G(I + PC) = (1 + b’)F. 

Note that the free distance of (1 + Dc)F is even, and that 
multiplication by (1 + DC) increases the number of states 
required by the decoder by a factor of 2”. 

Wolf and Ungerboeck apply the following procedure to 
find binary convolutional codes for the 1 - D channel in 
[ll]. First they choose a generator matrix Go for a good 
binary convolutional code (“good” means large Hamming 
distance and smalI constraint length). The encoder (sign 
code) is then taken to be the matrix G  = G ,(I - 8)-i, so 
the codewords generated by Go are passed through the 
inverse of the channel matrix before they are introduced to 
the channel. The generalization to the (1 - DN) channel is 
;2.cm;ltiply Go by (I - asc)-’ = (1 - DC)-‘(I + 6”” + 

. . . +6sc(b-1)). Wolf and Ungerboeck refer to this 
inversion procedure as preceding (the procedure occurs 
before the channel) and this is standard terminology in the 
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magnetic recording area. Perhaps a more descriptive name 
is “postcoding” since the procedure takes place after the 
encoder. The magnitude code F = Go, and the Euclidean 
free distance is bounded below by the Hamming distance 
of Go. Wolf and Ungerboeck prove that this lower bound 
is achieved when the free distance of Go is even. They also 
prove that when the free distance of Go is odd the lower 
bound is one less than the true distance. They also prove 
(again for the 1 - D channel) that the constraint length of 
the code is bounded above by the constraint length of Go 
plus 1. 

In our approach the free distance and the constraint 
length of the overall code is just a function of the magni- 
tude code. In the approach taken by Wolf and Ungerboeck 
[ll] the relationship between the sign and magnitude codes 
must be studied to determine the distance and complexity. 

The use of a preceded generator will generally imply 
that the generator will have rational terms; the encoding 
function is recursive (i.e., not freeback-free). The ad- 
vantages and disadvantages of such encoders are described 
by Fomey [14]. Forney proves that every binary convolu- 
tional code has a systematic, nonfeedback-free encoder. 
Since the method of Wolf and Ungerboeck involves en- 
coders with feedback, they rightfully chose the original 
matrix Go to be systematic; this has the possible advantage 
that the message appears as a subsequence of the magni- 
tude codeword. One possible disadvantage of such en- 
coders, as noted by Fomey, is that the average number of 
data errors associated with the most likely error events 
tends to be larger with such encoders. This is probably not 
a serious drawback in magnetic recording systems since 
the frequency of the error events is usually a more critical 
parameter of the system than the average bit error rate. 

V. CLOCKSYNCHRONIZATION 

A. Choosing the Coset 

Clock synchronization is maintained by eliminating long 
sequences of zeros as possible channel outputs. This is 
accomplished by choosing an appropriate coset of the sign 
code to generate the channel inputs. 

We consider a rate k/n sign code with generator matrix 
G  and a coset ai, i = 0,l; * *, n - 1. We restrict our atten- 
tion to lF,-sequences ai that are periodic and we are 
particularly interested in sequences for which this period is 
small. If the greatest common divisor (gcd) of the periods 
of the sequences ai is p then the decoder requires a trellis 
that is time-varying with period p. If ai = a’(D) = l/(1 
+ D) or 0 then the recording code is said to be stationary. 
Stationary recording codes should be used whenever possi- 
ble. 

Messages y’ = (J$, yi, . * * ), yj = 0 or 1, determine n 
output sequences z’, i = 0, 1, . . e, n - 1, according to the 
rule 

[z”,. . . , Zn-l] = [y”, yl,. . ., yk-l]G 

+ [a’, al; - ., an-l], 
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and the f 1 valued channel input x is given by 

xjn+t 
= (-1)“:. 

The codeword x is input to the (1 - DN)/2 channel. The 
zero sequence is a possible channel output if and only if 

(1 l Yo, Y 2. * *> Y k-l]G + [u”,-, a”-‘])(I + aN) 

= [o,-,o], 

is irreducible. In general we may reorder rows and col- 
umns so that I + aN is block diagonal and there are s 
identical irreducible diagonal blocks. The diagonal block is 
the b x b matrix I + 6’. Therefore it is sufficient to prove 
the lemma for the case s = 1. 

There is a unique way to write I + 6 N as a sum 

I + aN = D,P, + D,P,, 

where 6 is the matrix defined in (1). Thus 

[ y”, y’; . -, yk-‘] F = [a’;. ., C1](I + aN), 

where F = G( I + 6 N, is the generator matrix of the mag- 
nitude code. The problem of zero-run length lim iting the 
output sequence is precisely that of choosing If,-sequences 
ui, i = 0,l; * *, n - 1, so that [a’;. ., a”-‘](1 + aN) does 
not agree with a codeword of the magnitude code in all but 
finitely many positions. We begin this section by showing 
how to choose appropriate sequences ui, i = 0, 1, * * a, 
n - 1. 

where D,, D, are diagonal matrices and P,, P2 aiepermu- 
tation matrices. The permutation P, is the identity and the 
permutation P2 is a -+ a + N (mod n). The matrix D, = I 
and D, = diag [l, * . . , 1, D, . . . , D], where the number of 
D’s is N. Therefore 

det(l+ 8N) = det(D,) + det(D,) = 1 + DN. 

Example: A class of rate 3/4 sign codes G = [gii( D)] 
for the l-D* channel. Thus N=2,n=4,s=2,b= 
2, c = 1. We order g,, g,, g,, g,, the 3 x 3 m inors of G, 
by taking gi to be that m inor obtained by suppressing the 
ith column of G. Then we have Write n = sb, N = SC, where gcd(b, c) = 1. We may 

suppose that the k X n generator matrix G  is a basic 
encoder for the sign code. Thus the gcd of the k X k 
m inors of G  equals 1. Define 

A = gcd of the k X k m inors of the generator matrix 

11 0 1 01 
I+6*= 0 1 0 1 

D 0 1 0 
0 n 01 

F = G( I + 6 “) for the magnitude code. 
We order the ways to choose a k-subset of an n-set and we 
use this ordering to arrange k x k m inors in matrix form. (I + 6*y3) = 
Let Gck) = (gi; . ., gL), L = 

( 1 E , be the vector of k X k 

m inors of G, and let (I + 8N)(k) denote the kth corn- Thus 
pound matrix of I + 6 N. The ijth entry of the L X L 
matrix (I + aN)ck) istheijthkXkminorofI+6N.The F’3’=(f1,f2 ,J 

entries h, i = 1,-e., L, of the vector FCk) = G(“)(I + 
&V)(k) are the k x k m inors of F. This is just the 

l+D 0 D(l+ D) 0 
0 l+D 0 D(l + D) 

l+D 0 l+D 0 
0 l+D 0 l+D 1. 

f3, f4) = (1 + D> 

+h + g3, g2 + g4, Dgl t g3Dg2 + g4). 

Binet-Cauchy theorem (see for example Gantmacher [16, 
p. 9, vol. 11). Thus A = gcd( fi,. * . , fL) and we say that A 
is the content of Fck). 

Clearly A = gcd(f,, f2, f3, f4) = 1 + D or (1 + D)*, and 

Lemma 4: A divides det (I + 6 N). 

Proof: The ordering of k-sets induces a natural order- 
ing of (n - k)-sets; the ith (n - k)-set is just the comple- 
ment of the ith k-set. Define an L x L matrix (I + 
SN)cnPk), where the ijth entry is the ijth (n - k) X (n - k) 
m inor of I + 6 N. The identity 

(I + s~)(~)[(I + SN)‘~-~‘]’ = det (I + aN)l 

is a generalization of the usual expansion of the determi- 
nant in terms of 1 X 1 m inors and (n - 1) X (n - 1) 
m inors, and can be found in Gantmacher [16] or Aitken 
[17]. Now 

Ftk)[(I + BN)(“-~)]‘= det(1 + GN)Gck), 

so A divides the content of det (I + 6 N)G(k), which is just 
det (I + sN). 

Lemma 5: det(l+ sN) = (1 + DC)‘. 

Proof: If s = gcd(n, N) = 1, then the permutation 
a + a + N (mod n) is a single cycle and the matrix I + 8’ 

A = (1 + D)* 0 g, = g, mod (1 + D) and 

g, = g, mod(l + 0). 

Since G is a basic encoder, the row space R(G) modulo 
1 + D is three-dimensional over F, and so R(G) = w 1 
mod(l + D) for some binary vector w of length 4. It is’ 
straightforward to prove that 

A = (1 + D)‘@  w= (1,1,1,1),(0,1,0,1),or(1,0,1,0). 

Next we consider the problem of finding a basic syn- 
drome former for the magnitude code F = G(I + as,). 
The identity C(k)[C(n-k)]T = (det C)1 used to prove 
Lemma 4 will be applied again. 

We write the generator matrix G  for the sign code in the 
form 

G = A[I,,O]B, 
where A and B are unimodular matrices. Then 

H = [o, In-,](B-‘)T 
is a basic syndrome former. 
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Lemma 6: The gcd A* of the (n - k) X (n - k) minors each row of H equals 1, we may conclude that every 
of the matrix invariant factor di divides (1 + DC). 

E = H(I + 8°C + ,3*SC + . . . +Sdb-l))= Theorem 8: Let G  = A[I,,O]B be a basic encoder for 

is given by the sign code and let H = [0, l,-k](B-l)T be a basic 

A* = A(1 + Dc)n-k-s, 
syndrome former. Let d,ld,( 0.. Id,-, be the invariant 
factors of E = H(I + asc + . + . +LY(~-~))~, and let 

where,A is the gcd of the k X k minors of the generator X(D) = (1 + D”)/d,-,. 

matrix F = G(I + PC) of the magnitude code. Then the sign code G  can be made zero-run length 
limiting by generating channel inputs using a coset 

Proof: G iven that 1 

F = [&,O]B(I + a”“), a(D) = &(a’(D);*., a’-‘(D)), 

we have where a’(D) = 1 for some j, a’(D) = 0 for i # j, if and 
I;(“) = (1,o;. . ) O)B’k’( I + Ssc)(k). only if 1 + Dp t X(D). 

(I + S”‘)(I + PC + i3*” + -‘. +P@-‘)) = (1 + D’)I, Proof: The zero-run length is limited precisely when 

and so 
the sequence a( D)(I + PC) does not agree with a code- 
word of the magnitude code in all but finitely many 

1 + p= + a*= + . . . +t3sc(b-1) = (1 + D’)(I + as’)-‘. positions. If 1 + DPIX(D) then 

Thus a(D)(I + Ssc)E’T 

E = [0, I,-k](B-l)T[(l + D’)(I + SSc)-l]T, = (1 + Dc)a(D)HTdiag -!? 
and 

[d, “**‘&]* 

EC-“) = (l,o,. . .,o)[@G-k,)=]-’ 
Since 1 + DP](l + D’)/d, for all i, every entry in this 
vector of length n - k is a polynomial. Hence a( D)(I + 

‘(1 + Dc)“-k[((l + Ssc)(“-k))T] -l. 
PC) agrees with some codeword of the magnitude code in 
all but finitely many positions. 

(Recall from Lemma 4 that the zjth entry of Ecnpk) is the If 1 + Dp t X(D) then there exists an entry hcn-kjj in 
ijth (n - k) x (n - k) minor of E and that the orderings 

the last row of H for which 

of k x k and (n - k) x (n - k) minors are complemen- (l ’ Dc)h(n-k)j A(D)h(n-k)j 
tary.) The identities (l+Dp)d,-, = l+DP 

B(k)(B(n-k))T = (det B)1= I, 

(~+6SC)‘k)[(~+6”C)(“-k)] == [det (I+S”“)]I=(l+D”)“I, 

give 

EC-k) = (1 + Dc)“-k-“(l,O,. . .,o)B(k)(l + &sc)(k)o 

The content A* of Ecnek) differs from the content A of 
Fck) by the multiplicative factor (1 + Dc)“-k-s. 

Lemma 7: Let d,jd21 * . . Idnpk be the invariant factors 
of E = H(I + as’ + a*” + . *. +ascCb-n)‘, Then every 
invariant factor divides 1 + DC. 

Proof: Write 
E = A’diag[d,;.*, d,-,]E’, 

where A’ is a unimodular k X k matrix and E’ is a k X n 
polynomial matrix with a feedback-free, delay-free poly- 
nomial inverse E’-l. Since 

FE= = G(l + D’)IH= = 0, 

the polynomial matrix E’ is a basic syndrome former for 
the magnitude code F = G(I + PC). Since the matrix 

E’(I + PC)= = diag L [d,‘.+-]~l +D’)H 

is not a polynomial. If a(D) = [l/(1 + D)] 
(0,**~,0,1,0;~~ ,O), where the single nonzero entry is in 
position j, then a( D)(I + 8”) E’T is not a vector with 
polynomial entries. Hence a( D)(I + 8”) does not agree 
with a codeword of the magnitude code in all but finitely 
many positions. The sign code can be made zero-run 
length limiting by periodically changing the sign of a single 
channel input. 

We specialize Theorem 8 to the case n = k + 1 and 
obtain the following corollary. 

Corollary 9: Let G  be a rate k/(k + 1) sign code and let 
A be the gcd of the k x k minors of the magnitude code 
F = G(I + P). Then G  can be made zero-run length 
limiting by generating channel inputs using a coset 

a(D) = &(a’(D),..., a”-‘(D)), 

where the degree of the polynomial a’(D) is less than P, if 
and only if 

1 + Dp * (1 + D’Y 
A ’ 

Proof: By Lemma 6 

has polynomial entries, and since the gcd of the entries in d n-k = d, = A(1 + Dc)n-k-s = A(1 + DC)? 
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Example 9: Again we consider rate 3/4 sign codes G for 
the (1 - D*)/2 channel; N = 2, n = 4, s = 2, b = 2, c = 
1. By Lemma 6 

A* = A(1 + D)-l, 

and since A* divides 1 + D we have 

A=l+Dorl+D*. 
If A = 1 + D*, then it is possible to zero-run length lim it 
G  by changing the sign of a single channel input. If 
A = 1 + D, then a stationary trellis is not possible. How- 
ever a time-varying trellis with period 2 is possible. 

Example 10: Consider rate l/2 sign codes G for the 
(1 - D)/2 channel; N = 1, n = 2, s = 1, b = 2, c = 1. By 
Lemma 6, A* = A, and since A* divides (1 + D) we have 
A = 1 or 1 + D. Corollary 9 shows that it is possible to 
zero-run length lim it G  using a stationary trellis if and 
only if A = 1 + D. Since G is noncatastrophic, this is 
precisely the case when the entries g,,(D), g12(D) satisfy 
&l(l) = g,,(l) = 1. 

Example 11: Consider rate l/2 sign codes G = 
[g,,(D), g12(D)] for the (1 - D*)/2 channel; N = 2, n = 
2, s = 2, b = 1, c = 1. It is clear that A = (1 + 0). Since 
(1 + D’)“/A = 1 + D, it is not possible to zero-run length 
lim it G  using a stationary trellis (of course this is easy to 
see directly). However a time-varying trellis with period 2 
is possible. 

B. Calculation of the Maximum Zero-Run Length 

We have shown how to eliminate arbitrarily long se- 
quences of zeros as channel outputs by choosing an ap- 
propriate coset of the sign code to generate channel inputs. 
In this subsection we assume that an appropriate coset has 
been chosen and we consider the problem of finding the 
maximum zero-run length. Baumert, McEliece, and van 
Tilborg [18] considered the problem of symbol synchroni- 
zation in convolutionally coded systems, and we shall 
follow their approach here. 

Let G  = A[ Ik, 0] B be a basic encoder for the sign code, 
let H = [0, I,-k](B-l)T, and let E = H( I + 8” + Szsc 

. . . 

d:ld*l 

+asc(b-l))T. If E = A’diag[d,; * a, dnPk]E’, where 
*** Id,-, are the invariant factors of E, A’ is uni- 

modular, and E’ has a polynomial inverse (E ‘)-‘, then 

E’= diag[i,...,&](A’)’ 

.ff(I + 6”” + . . . +~MW)= 

is a basic syndrome former for the magnitude code F = 
G(I + PC). 

If there are nontrivial invariant factors d,, then there 
exist messages mi, m”, i = 0,l; * *, k - 1, for which the 
corresponding codewords x, x’ satisfy x # X’ and (1 - 
DN)x/2 ‘- (1 - DN)x’/2 (mod2). If (1 - DN)x/2 5: (1 
- DN)x’/2, then the output sequence (1 - DN)x/2 is 
flawed. Sometimes it is possible to correct flaws by choos- 
ing an appropriate coset of the sign code (Example 3) and 
sometimes it is not possible (Example 4). The problem of 

distinguishing these two cases is addressed in Section VI. 
The problems presented by noncorrectable flaws can be 
finessed by observing that the fraction of messages of 
length M  corresponding to flawed output sequences tends 
to 0 as M  tends to co. The input to the encoder can then 
be constrained to avoid bad messages at some marginal 
loss in data rate. However it may be quite complicated to 
do this in practice. 

However, magnitude codes with nontrivial invariant fac- 
tors di have the following advantages. 

1) As the degree of the polynomial X(D) = (1 + 
D’)/d,-, decreases so does the degree of the small- 
est polynomial 1 + DP for which 1 + DP t X(D). It 
is easier to zero-run length lim it sign codes for 
which d,-, is large. 

2) Dividing the entries of the rows of the matrix E = 
H(I + PC + a*” + *.. +Ssc(b-l))T by the in- 
variant factors di reduces the memory required by 
the syndrome former. This will reduce the maximum 
zero-run length. 

If E’ is a basic syndrome former for the magnitude 
code, then we may write 

E’ = Es-,D”-’ + ..a +E,D + E,, 

where Ei is an (n - k) x n matrix with all entries 0 or 1. 
We form the (n - k) X sn matrix 

V= [Es-@-, ... E,]. 

Then a binary vector c of length sn can be extended (in 
both directions) to a codeword in the magnitude code if 
and only if cu ’ = 0. Suppose we have shown that the 
sequence 

q(D) = &(a’(D);.., a’-‘(D))(I + PC) 

does not agree with a codeword of the magnitude code in 
all but finitely many positions. We require the maximum 
length of a subsequence that agrees with a subsequence of 
a codeword of the magnitude code. The sequence q(D) is 
periodic with period pn so there are pn different positions 
where such an agreement can begin. For each starting 
point 1 we follow the sequence q(D), collecting the most 
recent sn terms in a vector c. If at position I + M I - 1, the 
inner product CT/= # 0 for the first time, then &l, is the 
maximum length of an agreement starting in position 1. 
After pn calculations we know the maximum zero-run 
length. 

Example: There are 128 rate l/2 sign codes for the 
(1 1 D)/2 channel that require a decoder with no more 
than eight states. There are 12 noncatastrophic codes with 
squared Euclidean distance d * = 6 and they are listed in 
Table I. Consider the first entry of this table. 

A basic syndrome former for the magnitude code is 

[l + D + D*,l + D*] = [l,l] + [l,O]D + [l,l]D*, 
and so 

v = [11pop1]. 
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TABLE I 
THEMAXIWMZERO-R~NLENGTHOFTHEEIGHTSTATECODESFORTHE(~ - 0)/2 

CHANNELWITHSQUAREDEUCLIDEANDISTANCE d2 = 6 

Sign Code Magnitude Code 
G F 

Coset Zero-Run 
A a(D) Length 

809 

1 + D + D3, D 

1 + D2 + D3, D 

D2 + D3,1 

D3,1 + D 

1 f D, D2 

1, D + D2 

1 + D + D2 + D3,1 

1 + D3, D 

1 + D + D2 + D3, D2 

1+D2+D3,1+D 

1 + D + D= + D3, D 

1 + D + D3, D + D2 

1+D+D2+D3,1+D3 

1+D3,1+D+D2+D3 

D+D2+D3,1+D2+D3 

D+D2+D3,1+D+D3 

1+D+D3,1+D+D2 

1+D2+D3,1+D+D2 

1 + D2 + D3, D + D2 + D3 

1+D2+D3,1+D+D3 

1+D+D2,1+D+D3 

1 + D + D3, D + D2 + D3 

1+D+D3,1+D2+D3 

1+D+D2,1+D2+D3 

l+D &gl,Ol 

l+D 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

6 

6 

I 

7 

7 

7 

8 

8 

8 

8 

8 

8 

The sequence 

q(D) = &,o](‘+s)=(l,l,l)*~~ ). 

An agreement starting in an even position can only extend 
over five positions since 

(lljll~ll)V= + 0. 
However an agreement starting in an odd position can 
extend over six positions ((01~11~11~10)). 

If A = 1, then there are no flawed output sequences. 
This is because Lemma 2 implies that there are no pairs of 
codewords x, x’ with x * x’ and (1 - D)x/2 = (1 - 
D)x’/2 (mod2). If A = 1 + D, Then Lemma 2 implies 
that if codewords x, x’ satisfy x * x’, (1 - D)x/2 = (1 
- D)x’/2, then x, x’ correspond to messages L-m. Lemma 
1 now implies x’ = -x and (1 - D)x/2 = 0. Thus limit- 
ing the maximum zero-run length corrects all flaws. 

VI. FLAWCORRECTION 

Inputs to the (1 - DN)/2 channel are generated using a 
nontrivial coset [u’, ul;. ., u”-l] of a rate k/n sign code 
G. If the magnitude code F = G(I + BN) has nontrivial 
invariant factors, then there exist pairs of messages 
m’, m”, i = 0,l; * *, k - 1, for which the corresponding 
codewords x, x’ satisfy x‘ * x’ and (1 - DN)x/2 = (1 - 
DN)x’/2. In this section we address the problem of 
eliminating flawed output sequences by an appropriate 
choice of the coset [a’, * . *, u”-~]. Example 4 in Section II 

shows that this is not always possible. The main results of 
this section are theorems covering the most interesting 
cases; N = 1, 2 and n = k + 1. 

Let n = k + 1, and let G be an encoder for the sign 
code with a feedback-free, delay-free inverse. Then the gcd 
of the k X k minors of G is 1. Write n = sb, N = SC and 
suppose N = s = c = 1. The 1 X (k + 1) matrix H = GCk) 
is a basic syndrome former for G, and the 1 x (k + 1) 
matrix 

F(k) Gck’(l + 6 + 6* + -.* +@)= - = 
A A 

is a basic syndrome former for the magnitude code, where 
A is the gcd of the k X k minors of F = G(I + 8). By 
Lemmas 4 and 5, we have A = 1 or 1 + D. Observe that if 
Gck) = (gi; . ., gk+J, then 

A = 1 + D a GCk’(l + 6 + 6* + ... +6”-‘)T 

= Omod(1 + D) 
k+l 

@ iF1gj= Omod(1 + D). 

If A = 1, then there are no flawed output sequences be- 
cause Lemma 2 implies that there are no pairs of code- 
words x, x’ with x % x’ and (1 - D)x/2 = (1 - D)x’/2 
(mod2). Now suppose A = 1 + D. Consider codewords 
x, x’ corresponding to messages m’, m”, i = 0,l; * a, k - 
1, such that x # x’ and (1 - D)x/2 = (1 - D)x’/2. 
Write mj = ( - l)Y;mj’, where JJ/ = 0 or 1. Then by 
Lemma 2, (1 - D)x/2 = (1 - D)x’/2 (mod 2) = 
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[y'; . a, yk-l]G 
encoder 

(I+ 6) = [O,*** ,O]. Since G  is a basic 

[y”;-, yk-‘]G = - , 
lID[ll 

;.*,l]. 

Lemma 1 now implies x’ = -x, and so (1 - D)x/2 = 0. 
Thus flaw correction can be achieved by limiting the 
maximum zero-run length of possible output sequences. 
Theorem 10 below now follows directly from Corollary 9. 

Theorem 10: Let G  be a non-catastrophic rate k/( k + 1) 
sign code for the (1 - D)/2 channel, let F = G(I + S), 
and let A be the gcd of the k X k minors of F. Then 

1) A = 1 or 1 + D; 
2) A = 1 + D, if and only if Gck)(l, 1; * a, l)T = 0 

mod@ + D); 
3) if A = 1, then the sign code G  is not flawed (nor is 

any coset). It is possible to Iimit the zero-run length 
by generating channel inputs using a coset 
[a’(D);. ., a”-’ (D)], where the sequences u’(D) 
have period 2. It is not possible to limit the zero-run 
length using a stationary trellis; 

4) if A = 1 + D, then there exist sequences a’(D), i = 
O ,l;**, n - 1, with period 1 for which the coset 
[a’(D),. a ., a”-’ (D)] of the sign code is not flawed 
and is zero-run length limited. 

Remark: Theorem 10 implies that rate l/2 sign codes 
G  = k,,(D), g12(D)1 for wkh g,,(l) = g12(l) = 1 have 
significant advantages over other rate l/2 sign codes for 
the (1 - D)/2 channel (see also Table I). 

Next we consider rate k/(k + 1) codes for the (1 - 
D2)/2 channel in the case where k + 1 is even. Thus 
s = 2, c = 1. By Lemma 6 the 1 x (k + 1) matrix 

Fck) (1 + D)G@)(l+ a2 + e.+ +6”-2)T 
-= 

A A 
is a basic syndrome former for the magnitude code. By 
Lemma 7 every invariant factor of F divides 1 + D. The 
invariant factors of F are 1, 1; . ., 1, 1 + D, or 1; . ., 1, 
1 + D, 1 + D, since by Lemmas 4 and 5, the product of 
the invariant factors divides 1 + D2. Note that by Lemma 
6 we have A # 1, since A* is a polynomial and (1 + 
Dc)n-k-s = l/(1 + D). 

Consider codewords x, x’ corresponding to messages 
m’, m”, i = O ,l;.., k - 1, such that x # x’ and (1 - 
D2)x/2 = (1 - D2)x’/2. Write rn$ = (-l)J’;m(‘. Then by 
Lemma 2, 

;(l - D2)x = f(1 - D’)x’(mod2) 

H [yO,...,yk-1 ]G(I + a2) = [O/-,0]. 
The binary sequences annihilated by I + a2 are 0, l/(1 + 
D), l/(1 + D2), and D/(1 + D2). Thus 

[y’(D);*., yk-‘(D)]G = ~[lJ>-~Jl> 

and since G  is a basic encoder, y’ = 0 or l/(1 + D), i = 
0,l; * .) k - 1. It follows from the invariant factor decom- 
position of F that the input sequences [ y”, . . . , y“-‘] such 
that y’ = 0 or l/(1 + D); and 

[u”,- , yk-‘]G(I + ~3~) = [O,-,O], 
form a linear space of dimension 1 or 2 according as 
A = 1 + D or 1 + D2. It follows from Lemma 1 that 
either x’ = -x, or x;~ = -xzj, xij+i = xzj+i, or x4 = 
x2jP x$j+l = -x2j+l* Therefore (1 - D2)x/2 = 0 or [(l 
- D2>x/212j+s = 0, s = 0 or 1, for ah but finitely many 

j. These are the only possible flawed output sequences. If 
G(k)  = (gl,. . ., g,, i) then we have 

Condition for c to 
Sequence c be in the Sign Code 

&,L* * 41 
k+l 
xg,=Omod(l+D) 

i=l 

&+1,0,1,0,...,1,01 
(k+W2 

c g2i = 0 mod(l + D) . 
i-l 

(k-l)/2 
c gzi+i = 0 mod(l + D) 
i=O 

In Example 4 the generator matrix for the sign code is 
G=[1+D+D2,1+D2],and 

The only flawed output sequences (1 - D2)x/2 satisfy 
[(l - D2)x/21zj = 0 for all but finitely many j. 

If A = 1 + D and CfLiigi = 0 mod(l + D), then there 
is a unique input sequence [ y”, . . . , yk-‘1 such that yi = 0 
or l/(1 + D) and 

tv”,- , yk-‘]G(I + tS2) = [O,-,O]. 
The input sequence [ y”, - - a, yk-‘1 satisfies 

[ y”; . . , yk-‘1 G  = &,l)..., 11. 

The only flawed output sequence is the zero sequence. The 
problem of flaw correction reduces to that of limiting the 
zero-run length of possible output sequences, and we may 
apply Theorem 8. 

Suppose for example that C$“l’)/‘g,, = 0 mod(l + D). 
Then there is an input sequence [ y”, . - -, ykP1] such that 
[y’;.., yk-‘]G = (l/(1 + D))[l,O;.-,l,O]. Output se- 
quences (1 - D2)x/2 satisfying [(l - D2)x/2!2j = 0 for 
all but finitely many j are flawed. Write mj = (- l)“j, 
where sj = 0 or 1. If x is the codeword corresponding to 
messages m’, i = 0,l; - ., k - 1, then xjn+l = (-l)‘:, 
where 

[ZO; * * , z”] = [so; - -, sk-‘]G + [u”; . ., u”]. 

The output sequence (1 - D2)x/2 is flawed if and only if 
to = z2 = *** = zk. Let co,cl;..,ck be the columns of 
G  and let G , = [co, c2; . . , ck], Go = [ci, cs, . . . , ck-i]. If 
the columns of G , are independent over F[D], then the 
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equation 

[SO; * * , sk-l]G,(I + S) = [u’; - ., uk](I + 8) 
always has a solution [so, - . . , s k-1]. It is therefore not 
possible to correct the flawed output sequences. 

A similar argument applies to the case C$k~~)/~g~~+i = 0 
mod(l + 0). Note that since G  is a basic encoder either 
the even columns are independent over F [ D] or the odd 
columns are independent (or both). Theorem 11 sum- 
marizes the above discussion. 

then since n = k + 1 is odd, 

Theorem 11: Let G  be a noncatastrophic rate k/( k + 1) 
sign code for the (1 - D2)/2 channel, where k is odd. Let 
F = G(  I + a2), and let A be the gcd of the k X k minors 
of F. 

[y’(D);.., yk-l(D)]G = - 
l:D[l f ***,l]. 

In this case the problem of flaw correction reduces to that 
of limiting the zero-run length of possible output se- 
quences. (Note that if A = 1 + D*, then the invariant 
factors of F are l,l;.. , 1,l + D2.) If A = 1 + D2, then 
an argument similar to that given in Theorem 11 shows 
that if the columns of G  are independent over F [ D], then 
it is impossible to eliminate flawed output sequences by an 
appropriate choice of coset. We have proved the following 
theorem. 

(1) The invariant factors of F are 1,l; . ., 1,l + D or 
1,l; * *, 1,l + D,l + D. 

(2) If A = 1 + D, there are two cases; 

Theorem 12: Let G  be a noncatastrophic rate k/(k + 1) 
sign code for the (1 - D2)/2 channel, where k is even. Let 
F = G(I + S2) and let A be the gcd of the k x k minors 
of F. Suppose that the columns of G  are independent over 
F[Dl. 

(4 Cf2:gi = 0 mod(1 + 0); it is possible to limit 
the zero-run length using sequences u’(D) with 
period 2 and to eliminate flawed output se- 
quences. It is not possible to accomplish this 
with a stationary trellis; 
C$“T’)/“g,, = 0 mod(1 + D) and the columns of 
G , are independent over F[D], or C$k;1)/2g2i+l 
= 0 mod(l + D) and the columns of Go are 
independent over F[D]; it is not possible to 
eliminate flawed output sequences by an ap- 
propriate choice of coset. It is possible to limit 
the zero-run length using sequences u’(D) with 
period 2. 

1) A = 1, 1 + D, or 1 + D2. Further 

A=lifandonlyifG(k)(l,l,~~~,l)T=lmod(l+D) 
and if A # 1, then 

@ I 
A=1 +D2ifandonlyifG(k)(l,D,1,D,...,1) 

= 0 mod (1 + D2). 
2) If A = 1, then the recording code is not flawed, but 

limiting the zero-run length requires sequences 
u’(D) with period greater than 2. 

3) If A = 1 + D, then it is possible to eliminate flawed 
output sequences and to limit the zero-run. 

4) If A = 1 + D2, then it is not possible to eliminate 
flawed output sequences by an appropriate choice 
of coset. It is possible to limit the zero-run length 
using a stationary trellis. 

(3) If A = 1 + D2, then it is not possible to eliminate 
flawed output sequences by an appropriate choice 
of coset. It is possible to limit the zero-run length 
with a stationary trellis. 

Finally we consider rate k/(k + 1) codes for the (1 - 
D2)/2 channel in the case where k + 1 is odd. Here s = 1 
and c = 2. By Lemma 6 the 1 X (k + 1) matrix 

F(k) ,‘$k’(I + 62 + 64 + . . . +,32(fi-19T 

- = 
A A 

is a basic syndrome former for the magnitude code F. By 
Lemmas 4 and 5 we have A = 1, 1 + D, or 1 + D2. If 
G(k)  = (gl,. . ., gk+J, then by reducing the matrix (I + 13~ 
+s4+ *** +62(“-1))Tmodulo 1 + D*, it follows that 

k+l 

A=lifandonlyif xgi=lmod(l+D). (2) 
i=l 

If A # 1, then 

A = 1 + D2 if andonlyif Gck)(l, D,l, D,..-,l)T 

= Omod(1 + D2). (3) 

(Compare (2) and (3) with the hypotheses of Theorem 1 of 
Baumert, McEIiece, and van Tilborg [18].) If A = 1 + D 
and there exist F,-messages y’(D) = 0 or l/(1 + D), i = 
0,l; . *, k - 1, such that 

[y'(D),. - * , yk-l(D)]G(I + a2) = [O/.*,0], 

We conclude with an example in which one column of 
the magnitude code F is identically zero. 

Example: A rate 2/3 code for the (1 - D2)/2 channel. 
The sign code G  and the magnitude code F are given by 

G=[: : t]andF=[i ‘!lD lDD]. 

The 2 x 2 minors of F are fi = 1 + D2, f2 = f3 = 0, so 
that A = 1 + D2. Messages y’(D), y’(D) for which 

[y’(D), Y’(D)] F = [OAO] 
are [Y’(D), y’(D)1 = [l/(1 + D2>, Ml + D)l, Ml + 
D), 01, [D/(1 + D2), l/(1 + D)]. If we modify the encod- 
ing rules by taking 

x3k = (-l)km~-lm~-19 

x3k+l = (-1) k+l o 1 mkmk, x3k+2 = (-l)kmE 
so that 

sgk = (-1) km~-lm~-lp 
1 k+l 

‘3k+l = - 2 
o 1 mkmk - (-l)k-lm~-l]y 

‘1 
S3k+2 = - 2 

“rnz - (-l)kmO,-,ml,-, , 1 
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then the modified code is no longer flawed and the mini- 
mum squared distance is 4. We leave it as an exercise for 
the reader to prove that if F is a generator matrix for a 
magnitude code and one column of F is identically zero, 
then the minimum squared distance cannot exceed 4. 

VII. TABLES OF CODES 

Generator polynomials for the codes listed below are 
given in octal form; the octal representation of D4 + D3 

+ D2 + 1 is 35. Codes with flaws that cannot be corrected 
by choosing an appromiate coset of the sign code to 
generate inputs are marked with a star. All flawed codes 
have the property that the fraction of messages of length 
M corresponding to flawed output sequences tends to 0 as 
M tends to co. (In Example 4 there are essentially four 
pairs of bad messages.) In practice it may be quite com- 
plicated to constrain the input to the encoder to avoid 
these bad messages. However, it is theoretically possible to 
do this at some marginal loss in data rate. We include 

TABLE II 
RATE l/2 CODESFORTHE(~ - D)/2 CHANNEL 

Magnitude 
Sign Code Code Coset Zero-Run 

G F A d2 Memory a(D) Length 

3,O l+D 6 1 

L2 533 l+D 4 2 &Il.Ol 3 

13,2 17,11 l+D 6 3 &LO1 6 

1,26 55,27 1+D 8 5 &LO1 9 

153,16 167,145 l+D 10 6 

165,314 755,271 l+D 12 8 

TABLE III 
fi~~1/2 CODESFORTHE(~ - D2)/2 CHANNEL 

Magxiitude 
Sign Code Code Coset Zero-Run 

G F A d2 Memory a(D) Length 
1 

333 l+D4 1 ~LOI 2 

5,7* 17,11 l+D 6 3 &$LOl 6 

13,15 35,27 l-?-D 8 4 +-&Ol 8 

43,65* 145,137 l+D 10 6 

205,323 617,565 l+D 12 8 &$Ol 16 

TABLE IV 
R = l/2 CODES FOR THE (1 - D3)/2 CHANNEL 

Magnitude 
Sign Code Code Coset Zero-Run 

G F A d2 Memory a(D) Length 

LO $2 1 2 1 i+oJl 4 

191 5,‘3 l+D 4 2 

7,3 13,15 1 6 3 &yIWl 8 

11,33 1+D6 4 &P,ll 4 

23,13* 77,55 1+D3 8 5 +Wl 6 

67,31* 123,167 1+D3 10 6 owl 8 

221,121* 725,563 1 + D3 12 8 &LO1 12 
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TABLE V 
R = 2/3 CODESFORTHE(1 - D)/2 CHANNEL 

Magnitude 
Sign Code Code Coset Zero-Run 

G F A d2 Memory a(D) Length 

310 321 212 633 l+D 4 3 &tL’Wl 8 

370 347 247 14 6 3 l+D 6 5 &r1,0,01 14 

TABLE VI 
RATE 2/3 CODESFORTHE (1 - 9*)/2 CHANNEL 

Magnitude 
Sign Code Code Coset Zero-Run 

G F A d* Memory a(D) Length 

11 1* 3 3 0 
01 3 2 7 3 l+D* 4 3 ~LO,Ol 5 

32 2* 7 6 1 23 5 411 7 l+D* 6 5 y&[0,0>11 11 

11 3* 3 7 2 
47 7 12 11 3 1 + O2 6 5 &LO,01 11 

76 4 13 17 3 2 7 11 14 20 13 1 8 7 &JO.l,Ol 25 

TABLE VII 
hTE2/3 FORTHE(l- D3)/2 CHANNEL 

Magnitude 
Sign Code Code Coset Zero-Run 

G F A d* Memory a(D) Length 

1 1 o* 3 3 0 0 1 1 o 3 3 l+D* 4 2 ~[1’0’01 4 

3 3 2* 5 5 6 2 4 5 6 14 17 ’ + O2 6 5 &&O,Ol 11 

1 10 13* 3 3o 35 4 3 5 14 5 17 1+D2 8 7 &Jo, l,O] 19 

TABLE VIII 
RATE~/~CODESFORTHE(~ - D)/2 CHANNEL 

Magnitude 
Sign Code Code Coset Zero-Run 

G F A d2 Memory 44 Length 
1001 3101 

0120 0132 l+D 4 ‘3 &$0,0,0,11 12 
2010 2211 
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TABLE IX 
RATE 3 / 4 CODES FOR THE (1 - D2)/2 CHANNEL 

Magnitude 
Sign Code Code Coset Zero-Run 

G  F A d* Memory a(D) Length 
1100* 1111 

0102 0503 l+D* 4 3 &KWW 8 
0011 2211 

TABLE X 
RATE 3/4 CODESFORTHE(~ - D3)/2 CHANNEL 

Magnitude 
Sign Code Code Coset Zero-Run 

G  F A d* Memory a(D) Length 
1100 1111 

0102 0503 l+D* 4 3 &LWJJI 8 
0011 2211 

codes for the 1 - D3 channel to illustrate Corollary 9 and 
to further illustrate the fact that flawed codes have good 
zero-run length properties. 

VIII. CONCLUSION 

Motivated by an idealized model of the magnetic record- 
ing channel, we have designed codes for a partial response 
channel with transfer function (1 - DN)/2. Channel in- 
puts are generated using a nontrivial coset of a binary 
convolutional code called the sign code. The probability of 
decoder error is determined by the m inimum squared 
Euclidean distance between outputs corresponding to dis- 
tinct inputs. This Euclidean distance is bounded below by 
the free distance of a second binary convolutional code 
called the magnitude code. The coset of the sign code is 
chosen to lim it the zero-run length of the output of the 
channel and we have shown how to select an appropriate 
coset. We have analyzed the performance of rate k/( k + 1) 
codes on the (1 - D)/2 and (1 - D2)/2 channels. Re- 
cording codes for which the magnitude code admits non- 
trivial invariant factors (that is, catastrophic magnitude 
codes) can outperform magnitude codes with trivial in- 
variant factors. 

One problem demanding further study is the design of 
trellis codes for partial response channels with more com- 
plicated transfer functions. We note that transfer functions 
arising in optical-magnetic recording need not involve 
(1 - D) as a factor. A first step would be to design codes 
for a transfer function f(D) = (ON1 - II) . . . (0% - I,) 
where Ni, Zi are positive integers. 

A second problem is the design of codes with spectral 
nulls at certain frequencies. This is important when writing 
data on disks with an embedded servo system. There are 
fixed frequencies fi, f, and the servo signal e is the 
amplitude of fi m inus the amplitude of fi. If e > 0 then 
the head is moved left and if e < 0 then the head is moved 
right. Recent work by Marcus and Siegel [19] and by 

Ancheta, Hassner, and Howell [20] concerns the encoding 
of input data as run-length lim ited sequences with spectral 
nulls at certain frequencies using finite state machines. 
These authors consider run-length lim ited sequences be- 
cause they are trying to m inimize intersymbol interference. 
An alternative approach is to combine a finite state ma- 
chine with a code designed to exploit intersymbol inter- 
ference. Since we are no longer concerned with run-length 
constraints the finite state machine may’well be less com- 
plicated. 
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